Skip to main content

Advertisement

Log in

Assessment of geochemical processes in the shared groundwater resources of the Taoudeni aquifer system (Sahel region, Africa)

Évaluation des processus géochimiques dans lesl ressources en eaux souterraines partagées du système aquifère du Taoudeni (région du Sahel, Afrique)

Evaluación de los procesos geoquímicos en los recursos de aguas subterráneas compartidos del sistema acuífero de Taoudeni (región del Sahel, África)

非洲萨赫勒地区陶德尼含水系统共有地下水资源的地球化学过程评价

Avaliação de processos geoquímicos nos recursos hídricos subterrâneos compartilhados do sistema aquífero Taoudeni (região do Sahel, África)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Taoudeni basin occupies a large portion of the West African Craton in Mauritania, Mali, SW Burkina Faso, and Algeria. The multi-layer Taoudeni aquifer system (TAS) occurs in geological formations extending in age from the Infra-Cambrian to the Quaternary. These groundwater resources support local livelihoods, maintain vital ecosystems, and strongly affect terrestrial water and energy budgets in the region. Hydrogeochemical and stable (δ2H, δ13C, δ18O) and radioactive (3H, 14C) isotope analyses were carried out with the aim of identifying the major geochemical processes controlling groundwater quality and the recharge mechanisms. The analyzed groundwater samples showed a wide range of chemical compositions based on major ions, with limited variability, regardless of the aquifer lithology or stratigraphy. The predominant water type, Mg–Ca–HCO3, was found in most geological and hydrogeological settings. A principal component analysis of the hydrochemical data revealed the two major processes governing the geochemistry of groundwaters in the TAS. These are water–rock interaction (leaching, weathering, ion exchange) and anthropogenic contamination. Environmental isotopes revealed the presence of groundwaters with heterogeneous signatures, reflecting different recharge processes and varying groundwater ages. A widespread present-day recharge by direct infiltration of rainwater and/or by surface water was highlighted by significant tritium levels in most wells and high 14C activities occurring mainly in shallow aquifers. However, isotopically depleted δ18O contents with low 14C activities were found in the confined part of the Continental Intercalaire aquifer, particularly in the Algerian part, indicating the presence of fossil groundwater, recharged under colder past climatic conditions.

Résumé

Le bassin du Taoudeni occupe une grande partie du craton ouest-africain en Mauritanie, au Mali, au sud-ouest du Burkina Faso et en Algérie. Le système aquifère multicouche du Taoudeni (TAS) se trouve dans des formations géologiques dont l’âge s’étend de l’Infra-Cambrien au Quaternaire. Ces ressources en eaux souterraines soutiennent les besoins locaux, maintiennent des écosystèmes vitaux et impactent fortement les bilans en eau et énergie dans la région. Des analyses hydrogéochimiques et isotopiques (δ2H, δ13C, δ18O) et radioactifs (3H, 14C) ont été réalisées dans le but d’identifier les principaux processus géochimiques contrôlant la qualité des eaux souterraines et leurs mécanismes de recharge. Les échantillons d’eau souterraine analysés ont montré une large gamme de compositions chimiques, avec une variabilité limitée, indépendamment de la lithologie ou de la stratigraphie de l’aquifère. Le faciès hydrochimique prédominant, Mg–Ca–HCO3, est retrouvé dans la plupart des contextes géologiques et hydrogéologiques. Une analyse en composantes principales démontre les deux principaux processus régissant la géochimie des eaux souterraines du TAS. Il s’agit d’interactions eau/roche (lixiviation, altération, échange d’ions) et de contamination anthropique. Les isotopes environnementaux montrent des signatures hétérogènes des eaux souterraines, reflétant des processus de recharge et des âges des eaux souterraines variés. Une recharge actuelle généralisée par infiltration directe des eaux de pluie et/ou des eaux de surface a été mise en évidence par des niveaux significatifs de tritium dans la plupart des puits, et des activités élevées en 14C, principalement dans les aquifères peu profonds. Cependant, des teneurs en δ18O isotopiquement appauvries associées à de faibles activités 14C ont été trouvées dans la partie confinée de l’aquifère continental intercalaire, en particulier dans la partie algérienne, indiquant la présence d’eaux souterraines fossiles, rechargées dans des conditions climatiques antérieures plus froides.

Resumen

La cuenca de Taoudeni ocupa una gran parte del Cratón de África Occidental en Mauritania, Malí, el suroeste de Burkina Faso y Argelia. El sistema acuífero multicapa de Taoudeni (TAS) se encuentra en formaciones geológicas cuya edad se extiende desde el Infracámbrico hasta el Cuaternario. Estos recursos hídricos subterráneos sustentan los medios de vida locales, mantienen ecosistemas de vital importancia y afectan en gran medida a los balances hídricos y energéticos terrestres de la región. Se realizaron análisis hidrogeoquímicos y de isótopos estables (δ2H, δ13C, δ18O) y radiactivos (3H, 14C) con el fin de identificar los principales procesos geoquímicos que controlan la calidad de las aguas subterráneas y los mecanismos de recarga. Las muestras de agua subterránea analizadas mostraron una amplia gama de composiciones químicas basadas en iones principales, con una variabilidad limitada, independientemente de la litología o estratigrafía del acuífero. El tipo de agua predominante, Mg–Ca–HCO3, se encontró en la mayoría de los entornos geológicos e hidrogeológicos. Un análisis de componentes principales de los datos hidroquímicos reveló los dos procesos principales que rigen la geoquímica de las aguas subterráneas en el SAT. Se trata de la interacción agua–roca (lixiviación, meteorización, intercambio iónico) y la contaminación antropogénica. Los isótopos ambientales revelaron la presencia de aguas subterráneas con firmas heterogéneas, que reflejan diferentes procesos de recarga y distintas edades de las aguas subterráneas. Una recarga actual generalizada por infiltración directa de agua de lluvia y/o por aguas superficiales se puso de manifiesto por los niveles significativos de tritio en la mayoría de los pozos y las elevadas actividades de 14C que se producen principalmente en acuíferos poco profundos. Sin embargo, en la parte confinada del acuífero Continental Intercalaire, sobre todo en la parte argelina, se encontraron contenidos de δ18O isotópicamente agotados con actividades de 14C bajas, lo que indica la presencia de aguas subterráneas fósiles, recargadas en condiciones climáticas pasadas más frías.

摘要

陶德尼盆地在毛里塔尼亚、马里、布基纳法索西南部和阿尔及利亚的西非克拉通中占了很大一部分。陶德尼多层含水层系统 (TAS)赋存于下寒武纪至第四纪的地层中。这些地下水资源用于支持当地的生活,维持重要的生态系统,并强烈影响该地区的陆源水和能源的均衡。通过开展水文地球化学与稳定同位素(2H, δ13C, δ18O)和放射性同位素(3H, 14C)分析,确定了控制地下水质量的主要地球化学过程及其补给机制。地下水样品分析结果显示,无论含水层岩性或地层的差异如何,基于主要离子的化学组成范围较广,且其变异性有限。在大多数地质和水文地质环境中,地下水化学类型主要为Mg–Ca–HCO3型。通过对水化学数据进行主成分分析,揭示了控制陶德尼多层含水层系统中地下水地球化学的两个主要过程:水–岩相互作用(淋滤、风化、离子交换)和人为污染。环境同位素组成指示了存在具有异质性特征的地下水,反映了不同的补给过程和不同的地下水年龄。目前广泛存在的雨水和/或地表水的直接入渗补给,突出表现在大多数井中显著的氚水平和主要存在于浅层含水层的高14C活度。然而,在大陆中间承压含水层中(特别是在阿尔及利亚部分)地下水具有贫化的18O同位素组成和低的14C活度,表明存在化石地下水,在过去较冷的气候条件下接受补给。

Resumo

A bacia de Taoudeni ocupa uma grande porção do Cráton da África Ocidental na Mauritânia, Mali, Sudoeste de Burkina Faso e Argélia. O sistema aquífero multicamada Taoudeni (SAT) ocorre em formações geológicas que se estendem desde o Infra-Cambriano até o Quaternário. Esses recursos hídricos subterrâneos sustentam os meios de subsistência locais, mantêm ecossistemas vitais e afetam fortemente os orçamentos de água e energia terrestre na região. Análises isotópicas hidrogeoquímicas e estáveis (δ2H, δ13C, δ18O) e radioativas (3H, 14C) foram realizadas com o objetivo de identificar os principais processos geoquímicos que controlam a qualidade das águas subterrâneas e os mecanismos de recarga. As amostras de águas subterrâneas analisadas mostraram uma ampla gama de composições químicas baseadas em íons maiores, com variabilidade limitada, independentemente da litologia ou estratigrafia do aquífero. O tipo de água predominante, Mg–Ca–HCO3, foi encontrado na maioria dos ambientes geológicos e hidrogeológicos. Uma análise de componentes principais dos dados hidroquímicos revelou os dois principais processos que regem a geoquímica das águas subterrâneas no SAT. Estes são a interação água–rocha (lixiviação, intemperismo, troca iônica) e contaminação antropogênica. Os isótopos ambientais revelaram a presença de águas subterrâneas com assinaturas heterogêneas, refletindo diferentes processos de recarga e idades variadas das águas subterrâneas. Uma ampla recarga atual por infiltração direta de águas pluviais e/ou por águas superficiais foi destacada por níveis significativos de trítio na maioria dos poços e altas atividades de 14C ocorrendo principalmente em aquíferos rasos. No entanto, teores de δ18O isotopicamente empobrecidos com baixas atividades de 14C foram encontrados na parte confinada do aquífero Continental Intercalaire, particularmente na parte argelina, indicando a presença de águas subterrâneas fósseis, recarregadas sob condições climáticas passadas mais frias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adithya VS, Chidambaram S, Thivya C, Thilagavathi R, Prasanna MV, Nepolian M, Ganesh N (2016) A study on the impact of weathering in groundwater chemistry of a hard rock aquifer. Arab J Geosci 9:158

    Article  Google Scholar 

  • Albert-Villanueva E, Permanyer A, Tritlla J, Levresse G, Salas R (2016) Solid hydrocarbons in Proterozoic dolomites, Taoudéni Basin, Mauritania. J Petrol Geol 39(1):5–28

    Article  Google Scholar 

  • Andrews JN, Fontes J-C, Aranyossy J-F, Dodo A, Edmunds WM, Joseph A, Travi Y (1994) The evolution of alkaline groundwaters in the continental intercalaire aquifer of the Irhazer Plain Niger. Water Resour Res 30(1):45–61. https://doi.org/10.1029/93WR02226

  • AU (2020) Framework for Irrigation Development and Agricultural Water Management in Africa. African Union, Addis Ababa, Ethiopia

  • Beyerle U, Rueedi J, Leuenberger M, Aeschbach-Hertig M, Peeters F, Kipfer R, Dodo A (2003) Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 kyr BP derived from groundwater. Geophys Res Lett 30(4). https://doi.org/10.1029/2002GL016310

  • Cartwright I, Currell MJ, Cendón DI, Meredith KT (2020) A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas. J Hydrol 580:124247

    Article  Google Scholar 

  • Chen Z, Grasby SE, Osadetz KG (2004) Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J Hydrol 290:43–62

    Article  Google Scholar 

  • Chidambaram S, Karmegam U, Prasanna MV, Sasidhar P, Vasanthavigar M (2011) A study on hydrochemical elucidation of coastal groundwater in and around Kalpakkam region, southern India. Environ Earth Sci 64:1419–1431

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

    Google Scholar 

  • Collignon B (2022) Vall MMOM (2022) remote sensing exploration of piezometric depressions in the Taoudeni basin (Mali-Mauritania). Arab J Geosci 15:1319

    Article  Google Scholar 

  • Cook P, Herczeg AL (eds) (2000) Environmental tracers in subsurface hydrology. Kluwer, New York

    Google Scholar 

  • Coplen TB, Wildman J, Chen J (1991) Improvement in the gaseous hydrogen water equilibration technique for hydrogen isotopes ration analysis. Anal Chem 63:910–912

    Article  Google Scholar 

  • Craig H (1961) Isotopic variation in meteoric waters. Sciences 133:1702–1703

  • Dakouré D (2003) Etude hydrogéologique et géochimique de la bordure Sud-Est du bassin sédimentaire de Taoudeni (Burkina-Faso, Mali), essai de modélisation [Hydrogeological and geochemical study of the southeastern edge of the Taoudeni sedimentary basin (Burkina-Faso, Mali), modeling test]. PhD Thesis, University of Pierre et Marie Curie UPMC, Paris, 222 pp

  • Dakouré D (2010) Multi-disciplinary approach to improve the knowledge of southeastern border of Taoudeni sedimentary basin. International conference “Transboundary aquifers: challenges and new directions” (ISARM2010), Paris, December 2010

  • Derouane J (2008) Modélisation hydrogéologique du bassin sédimentaire, rapport final, Programme de valorisation des resources en eau de l’ouest [Hydrogeological modeling of the Sedimentary Basin. Final report, Western Water Resources Development Program]. VREO, Burkina Faso, Mali, 73 pp

  • Edmunds WM, Guendouz A, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822

    Article  Google Scholar 

  • Epstein S, Mayeda TK (1953) Variations of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Etcheverry D (2002) Valorisation des méthodes isotopiques pour les questions pratiques liées aux eaux souterraines [Evaluation of isotopic methods for groundwater investigation]. Report of the Office fédéral des eaux et de la géologie, Lausanne, Switzerland

    Google Scholar 

  • Everitt BS, Hothorn T (2011) An introduction to applied multivariate analysis with R. Springer, New York

    Book  Google Scholar 

  • Fontes JC (1980) Environmental isotopes in groundwater hydrology. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 75–140

    Google Scholar 

  • Fontes JC, Garnier JM (1979) Determination of the initial14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15(2):399–413

    Article  Google Scholar 

  • Fontes JC, Gasse F, Andrews JN (1993) Climatic conditions of Holocene groundwater recharge in the Sahel zone of Africa. In: Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, IAEA-SM-329/59, IAEA, Vienna, pp 231–248

  • Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1):3–30

    Article  Google Scholar 

  • Gerbe A (2013) Rapport de l’étude inventaire pour identifier et collecter les données et les informations existantes au Mali, REPSAHEL Projet Amélioration de la résilience des populations sahéliennes aux mutations environnementales [Report of the inventory study to identify and collect existing data and information in Mali, REPSAHEL project improving the resilience of Sahelian populations to environmental changes]. OSS, Tunis, Tunisia

  • Gourcy L, Aranyossy JF, Olivry JC, Zuppi GM (2000) Space and time variations in the isotopic composition (δ2H–δ18O) of Niger inland delta water (Mali). C R Acad Sci Paris, Earth Planet Sci 331:701–707

    Google Scholar 

  • Guo H, Wang Y (2004) Hydrogeochemical processes in shallow quaternary aquifers from the northern part of the Datong Basin China. Appl Geochem 19(1):19–27. https://doi.org/10.1016/S0883-2927(03)00128-8

  • Huneau F, Dakoure D, Celle-Jeanton H, Vitvar T, Ito M, Traore S, Compaore NF, Jirakova H, Le Coustumer P (2011) Flow pattern and residence time of groundwater within the south-eastern Taoudeni sedimentary basin (Burkina Faso, Mali). J Hydrol 409:423–439

    Article  Google Scholar 

  • IAEA/WMO (2020) Global network of isotopes in precipitation. GNIP, Database. https://nucleus.iaea.org/wiser. Accessed July 2023

  • IWACO (1989) Etude du bilan d’eau du Burkina Faso, Tome 2: Inventaire des ressources en eau. Ministère de l’Eau,[Burkina Faso water balance study, vol 2: inventory of water resources. Ministry of Water]. IRC, The Hague, Burkina Faso

  • Jankowski J, Acworth RI, Shekarforoush S (1998) Reverse ion exchange in deeply weathered porphyritic dacite fractured aquifer system, Yass, New South Wales, Australia. In: Arehart GB, Hulston JR (eds) 9th International Symposium on Water–Rock Interaction. AA Balkema, Rotterdam, pp. 243–246

  • Kelepertsis A (2000) Applied geochemistry. Macedonian Publications, Greece, pp. 36–37

  • Khmila K, Trabelsi R, Zouari K, Kumar S (2021) Application of geochemical and isotopic tracers for the evaluation of groundwater quality in the irrigated area of the Sbiba plain (central West Tunisia). Agric Ecosyst Environ 313, 15 June 2021, 107298. https://doi.org/10.1016/j.agee.2021.107298

  • Kim JH, Kim RH, Lee J, Cheong TJ, Yum BW, Chang HW (2005) Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrol Process J 19:1261–1276

    Article  Google Scholar 

  • Le Gal La Salle C, Marlin C, Leduc C, Taupin JD, Massault M, Favreau G (2001) Renewal rate estimation of groundwater based on radioactive tracers (3H,14C) in an unconfined aquifer in a semi-arid area, Iullemeden Basin, Niger. J Hydrol 254:145–156

    Article  Google Scholar 

  • Lee JY, Cheon JY, Lee KK, Lee SY, Lee MH (2001) Statistical evaluation of geochemical parameter distribution in a groundwater system contaminated with petroleum hydrocarbons. Environ Qual J 30:1548–1563

    Article  Google Scholar 

  • Manish K, Ramanathan A, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geosci 50:1025–1039

    Google Scholar 

  • Mathieu R, Bariac T, Fouillac C, Guillot B, Mariotti A (1993) Variations en isotopes stables dans les précipitations en 1988 et 1989 au Burkina Faso: apports de la météorologie régionale [Variations in stable isotopes in precipitation in 1988 and 1989 in Burkina Faso: contributions from regional meteorology]. Veille Clim Satell 45:47–64

    Google Scholar 

  • Matiatos I, Alexopoulos A, Godelitsas A (2014) Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the ground water resources in north-eastern Peloponnesus (Greece). Sci Total Environ 476–477:577–590

    Article  Google Scholar 

  • McLean W, Jankowski J (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo O (ed) XXXIAH Congress on Groundwater: Past Achievements and Future Challenges. A.A. Balkema, Rotterdam, pp. 567–573

  • Mukherjee A, Bhattacharya P, Shi F, Fryar AE, Mukherjee AB, Xie ZM, Jacks G, Bundschuh J (2009) Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Appl Geochem 24:1835–1851

    Article  Google Scholar 

  • Nangombe S, Zhou T, Zhang W, Wu B, Hu S, Zou L, Li D (2018) Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios. Nat Clim Change 8:375–380

    Article  Google Scholar 

  • Ngugi DK, Brune A (2012) Nitrate reduction nitrous oxide formation and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ Microbiol 14(4):860–871. https://doi.org/10.1111/j.1462-2920.2011.02648.x

  • Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Climate change 2014: impacts, adaptation, and vulnerability, part B: regional aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 1199–1265

  • OSS (Observatoire du Sahara et du Sahel) (2007) Gestion Concertée des ressources en Eau partagées des grands bassin transfrontaliers Sahelo-Sahariens, problématique de la gestion des ressources en Eau de l’ensemble des Systèmes Aquifères d’Iullemeden, deTaoudeni et le Fleuve Niger [Concerted management of shared water resources of the large Sahelo-Saharan cross-border basins, problem of the management of water resources of all the Aquifer Systems of Iullemeden, Taoudeni and the Niger River]. OSS, Tunis, Tunisia, p 15

  • OSS (Observatoire du Sahara et du Sahel) (2013) Gestion Intégrée et Concertée des Ressources en Eau des Systèmes Aquifères d’Iullemeden, deTaoudéni/Tanezrouft et du fleuve Niger – GICRESAIT, synthèse finale [Integrated and concerted management of water resources in the aquifer systems of Iullemeden, Taoudéni/Tanezrouft and the Niger River. GICRESAIT, Final summary]. ANTEA, White Plains, NY, 103 pp

  • Ouédraogo I (1994) Géologie et hydrogéologie des formations sédimentaires de la boucle du Mouhoun (Burkina Faso) [Geology and hydrogeology of sedimentary formations in the Mouhoun loop (Burkina Faso)]. PhD Thesis, University of Cheikh Anta Diop, Dakar, Senegal, 116 pp

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25:914–923

    Article  Google Scholar 

  • Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K (2010) Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ Monit Assess 168(1–4):63–90. https://doi.org/10.1007/s10661-009-1092-5

    Article  Google Scholar 

  • Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins Southern India. Environ Geol 46(1):47–61 . https://doi.org/10.1007/s00254-004-1012-5

  • Rooney AD, Selby D, Houzay JP, Renne PR (2010) Re–Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin. Mauritania: implications for basin-wide correlations and Re–Os organic-rich sediments systematic. Earth Planet Sci Lett 289:486–496

    Article  Google Scholar 

  • Saito-Kokubu Y, Matsubara A, Miyake M, Nishizawa A, Ohwaki Y, Nishio T, Sanada K, Hanaki T (2015) Progress on multi-nuclide AMS of JAEA-AMS-TONO. Nucl Instrum Methods Phys Res, Sect B 361:48–53

    Article  Google Scholar 

  • Schlüter T (2006) Geological atlas of Africa, with notes on stratigraphy, tectonics, economic geology, geohazards and geosites of each country. Springer, Heidelberg, Germany, 272 pp

  • Shields GA, Deynoux M, Strauss H, Paquet H, Nahon D (2007) Barite-bearing cap dolostones of the Taoudéni Basin, Northwest Africa: sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciations. Precambrian Res 153:209–235

    Article  Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji River basin, Japan. Environ Model Softw 22:464–475

    Article  Google Scholar 

  • Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer, Heidelberg, Germany

    Book  Google Scholar 

  • SOGREAH (1988) Projet Mali Sud II: sous projet hydraulique villageoise—rapport final [Mali South II Project: village water sub-project—final report]. SOGREAH and Ministry of Agriculture - CMDT, Bamako, Mali

  • SOGREAH (1994) Etude des ressources en eau souterraine de la zone sédimentaire de la région de Bobo-Dioulasso: modélisation des nappes des grès GKS, GFG, GGQ et SAC—utilisation des modèles MONA, ESTRA, TRAFT et SIMUTRA [Study of groundwater resources in the sedimentary zone of the Bobo-Dioulasso region: modeling of GKS, GFG, GGQ and SAC sandstone aquifers—use of MONA, ESTRA, TRAFT and SIMUTRA models. DRH-HB

  • Suk H, Lee KK (1999) Characterization of a groundwater hydrochemical system through multivariate analysis: clustering into groundwater zones Ground Water 37:358–366

  • Taupin JD, Coudrain-Ribstein A, Gallaire R, Zuppi GM, Filly A (2000) Rainfall characteristics (δ18O, δ2H, T and Hr) in Western Africa, regional scale and influence of irrigated areas. J Geophys Res 105(D9):11911–11924

    Article  Google Scholar 

  • Taupin JD, Gaultier G, Favreau G, Leduc C, Marlin C (2002) Isotopic variability of Sahelian rainfall at different time steps in Niamey (Niger, 1992–1999): climatic implications. C R Geosci 334:43–50

    Article  Google Scholar 

  • Taylor CB (1976) Quantifying uncertainty in nuclear analytical measurements. Technical procedure note no. 19. IAEA Isotope Hydrology Laboratory, International Atomic Energy Agency, Vienna

  • Thilagavathi R, Chidambaram S, Prasanna MV, Thivya C, Singaraja C (2012) A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, Southeast India. Appl Water Sci 2(253):269

    Google Scholar 

  • Thivya C, Chidambaram S, Singaraja C, Thilagavathi R, Prasanna MV, Jainab I (2013) A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environ Dev Sustain 15:1365–1387

    Article  Google Scholar 

  • Toth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7(1):1–14

    Article  Google Scholar 

  • Trabelsi R, Zouari K (2019) Coupled geochemical modeling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: a study from north eastern of Tunisia. Groundw Sustain Dev 8(2019):413–427

    Article  Google Scholar 

  • Trabelsi R, Zouari K, Kammoun S, Trigui MR (2020) Recharge and paleo-recharge of groundwater in different basins in Tunisia. Quat Int. https://doi.org/10.1016/j.quaint.2019.04.026

  • USAID (2018) Climate risk profile: Mali. https://www.climatelinks.org/sites/default/files/asset/document/Mali_CRP_Final.pdf. Accessed August 2023

  • World Bank (2011) Climate risk and adaptation: country profile—Mali. https://climateknowledgeportal.worldbank.org/sites/default/files/2018-10/wb_gfdrr_climate_change_country_profile_for_MLI.pdf. Accessed August 2023

  • World Bank (2020) Indicateurs du développement dans le monde. Last updated date 01/07/2020. https://www.banquemondiale.org/fr/country/mali/overview. Accessed August 2020

  • Yidana SM, Yidana A (2010) Assessing groundwater quality using water quality index and multivariate statistical analysis: the Voltaian basin, Ghana. Environ Earth Sci 59(7):1461–1473

    Article  Google Scholar 

  • Zhou F, Guo H, Liu Y, Jiang Y (2007) Chemometrics data analysis of marine water quality and source identification in Southern Hong Kong. Mar Pollut Bull 54(6):745–756. https://doi.org/10.1016/j.marpolbul.2007.01.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude towards the LRAE in Sfax (Tunisia) staff and particularly to Dr. Khaoula Khmila for her precise work on the database and GIS mapping.

Funding

This investigation was conducted within the framework of two IAEA regional projects: RAF7011 “Integrated and Sustainable Management of Shale Aquifer Systems and Basins of the Sahel region”, and RAF7019 “Adding the Groundwater Dimension to the Understanding and Management of Shared Water Resources in the Sahel Region”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Trabelsi.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the authors

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue “Hydrogeology of arid environments”

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, R., Zouari, K., Araguás Araguás, L.J. et al. Assessment of geochemical processes in the shared groundwater resources of the Taoudeni aquifer system (Sahel region, Africa). Hydrogeol J 32, 167–188 (2024). https://doi.org/10.1007/s10040-023-02688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02688-5

Keywords

Navigation