Skip to main content
Log in

Analysis of water gushing after blockage of a drainage system in a deeply buried tunnel

Analyse du jaillissement de l’eau après obstruction du système de drainage d’un tunnel enterré profond

Análisis de los flujos de agua resultantes de la obstrucción de un sistema de drenaje en un túnel enterrado en profundidad

深埋隧道排水系统堵塞后涌水分析

Análise de água jorrante depois de um bloqueio de sistema de drenagem em um túnel profundamente enterrado

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

To calculate the amount of water inflow and the head borne by the structure after the drainage system of a deeply buried tunnel is blocked, a simplified calculation model of water inflow is constructed. Based on the complex function and Darcy’s law, the seepage volume of deep-buried tunnels and the calculation formula of the seepage pressure that is borne on the inner side of the initial support are deduced. The sensitivity of the characteristic parameters is studied afterwards. Finally, the on-site monitoring data verify the rationale behind the simplified calculation model and the correctness of the formula derivation. Studies have shown that when the seepage is stable, the water inflow will continue to decrease as the circumferential blind pipe spacing increases, but the sensitivity will increase from a weak point and then gradually further weakens. When the distance between the circular blind pipes is the same, the water inflow increases as the permeability at the position of the circular blind pipe increases, but the sensitivity gradually decreases. As the thickness of the geotextile increases, the amount of water inflow gradually increases, and the height of the water head borne by the initial support gradually decreases, but the sensitivity gradually decreases.

Résumé

Pour calculer la quantité d’eau entrante et la charge supportée par la structure après que le système de drainage d’un tunnel enterré ait été obstrué, un modèle de calcul simplifié du débit entrant a été établi. De la fonction complexe et de la loi de Darcy on déduit le volume d’infiltration des tunnels enfouis et la formule de calcul de la pression d’infiltration supportée par la face interne de la structure initiale. On étudie ensuite la sensibilité des paramètres caractéristiques. Enfin, les données de surveillance in situ permettent de vérifier le bien-fondé du modèle de calcul simplifié et l’exactitude de la dérivation de la formule. Des études ont montré que lorsque l’infiltration est stable, l’afflux d’eau continuera à diminuer à mesure que l’espacement au tour des tuyaux aveugles augmente, mais la sensibilité augmentera à partir d’un point faible, puis décroîtra encore progressivement. Quand la distance entre les conduits aveugles circulaires est la même, l’entrée d’eau augmente au fur et à mesure que la perméabilité au droit du conduit borne circulaire augmente, mais la sensibilité diminue graduellement. Au fur et à mesure que l’épaisseur du géotextile augmente, la quantité d’eau entrante croît graduellement et la hauteur de la charge d’eau supportée par la structure initiale décroît graduellement, mais la sensibilité décroît progressivement.

Resumen

Se ha construido un modelo de cálculo simplificado de la afluencia de agua para calcular la cantidad de agua que entra y la carga que soporta la estructura después de la obstrucción del sistema de drenaje de un túnel enterrado en profundidad. Sobre la base de una función compleja y de la ley de Darcy, se deduce el volumen de infiltración de los túneles enterrados en profundidad y la fórmula de cálculo de la presión de infiltración que se soporta en el lado interior del soporte inicial. Posteriormente se estudia la sensibilidad de los parámetros característicos. Por último, los datos de monitoreo in situ verifican el fundamento del modelo de cálculo simplificado y la corrección de la derivación de la fórmula. Los estudios han demostrado que, cuando la infiltración es constante, la entrada de agua seguirá disminuyendo a medida que aumente la distancia entre los tubos circundantes ocultos, pero la sensibilidad aumentará a partir de un punto débil y luego se debilitará gradualmente. Cuando la distancia entre los tubos circulares se mantiene igual, la entrada de agua aumenta a medida que aumenta la permeabilidad en la posición del tubo circular, pero la sensibilidad disminuye gradualmente. A medida que aumenta el espesor del geotextil, la cantidad de entrada de agua aumenta gradualmente, y la altura de la carga de agua soportada por el soporte inicial disminuye paulatinamente, pero la sensibilidad disminuye gradualmente.

摘要

为计算深埋隧道排水系统封堵后的进水量和结构承载水头高度, 建立了进水简化计算模型。根据复变函数和达西定律, 推导了深埋隧道渗流量和初始支护内侧承受的渗流压力的计算公式。随后研究了特征参数的灵敏度。最后, 现场监测数据验证了简化计算模型的合理性和推导公式的正确性。研究表明, 当渗流稳定时, 随着周围盲管间距的增加, 进水量会继续减少, 但敏感性会从弱点开始增加, 然后逐渐进一步减弱。当圆形盲管间距相同时, 随着圆形盲管位置渗透率的增加, 进水量增加, 但灵敏度逐渐降低。随着土工布厚度的增加, 进水量逐渐增加, 初始支座承受的水头高度逐渐降低, 但敏感性逐渐降低。

Resumo

Para calcular a quantidade de entrada de água e a carga suportada pela estrutura depois do sistema de drenagem bloqueado de um túnel profundamente enterrado, foi construído um modelo de cálculo simplificado da entrada de água. Baseado em uma função complexa e na lei de Darcy, são deduzidos o volume de infiltração de tuneis profundos e a fórmula de cálculo da pressão de infiltração que é suportada no lado interno do suporte inicial. A sensibilidade da parâmetros característicos é estudada posteriormente. Finalmente, os dados de monitoramento no local verificam a lógica por trás do modelo de cálculo simplificado e a exatidão da derivação da fórmula. Estudos têm mostrado que quando a infiltração é estável, a entrada de água continuará a diminuir enquanto o espaçamento do tubo cego circunferencial aumenta, mas a sensibilidade aumentará a partir de um ponto fraco e depois gradualmente enfraquecerá ainda mais. Quando a distância entre os tubos cegos circulares é a mesma, a entrada de água aumenta à medida que a permeabilidade aumenta na posição do tubo cego circular, mas a sensibilidade diminui gradualmente. À medida que a espessura do geotêxtil aumenta, a quantidade de entrada de água diminui gradualmente, e a altura da carga de água suportada pelo suporte inicial diminui gradualmente, mas a sensibilidade diminui gradualmente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arjnoi P, Jeong JH, Kim CY, Park KH (2009) Effect of drainage conditions on pore water pressure distributions and lining stresses in drained tunnels. Tunn Undergr Space Technol 24(4):376–389

    Article  Google Scholar 

  • Cao Y, Jiang J, Xie KH, Huang WM (2014) Analytical solutions for nonlinear consolidation of soft soil around a shield tunnel with idealized sealing linings. Comput Geotech 61:144–152

    Article  Google Scholar 

  • Carman PC (1938) The determination of the specific surface of powders I. Transactions 57:225–234

    Google Scholar 

  • Carman PC (1956) Flow of gases through porous media. Butterworths, Oxford, 182 pp

  • Chang DS, Zhang LM (2013) Critical hydraulic gradients of internal erosion under complex stress states. J Geotech Geoenviron 139(9):1454–1467

    Article  Google Scholar 

  • Chen Y, Cui Y, Barrett AG, Chille F, Lassalle S (2019) Investigation of calcite precipitation in the drainage system of railway tunnels. Tunn Undergr Space Technol 84:45–55

    Article  Google Scholar 

  • Dietzel M, Rinder T, Leis A, Reichl P, Sellner P, Draschitz C, Plank G, Klammer D, Schöfer H (2008) Koralm Tunnel as a case study for sinter formation in drainage systems: precipitation mechanisms and retaliatory action. Geomech Tunnell 1(4):271–278

    Article  Google Scholar 

  • Evett JB, Liu C (1987) Fundamentals of fluid mechanics. McGraw-Hill, New York, pp 381–390

    Google Scholar 

  • Galan I, Baldermann A, Kusterle W, Dietzel M, Mittermayr F (2019) Durability of shotcrete for underground support: review and update. Constr Build Mater 202:465–493

  • Fu HL, An PT, Li K, Cheng GW, Li J, Yu XH (2020) Grouting design of rich water tunnels and the calculation of distance between annular blind pipes. Adv Civil Eng 6:1–10

    Google Scholar 

  • Huangfu M, Wang MS, Tan ZS, Wang XY (2010) Analytical solutions for steady seepage into an underwater circular tunnel. Tunn Undergr Space Technol 25(4):391–396

    Article  Google Scholar 

  • Hwang JH, Lu CC (2007) A semi-analytical method for analyzing the tunnel water inflow. Tunn Undergr Space Technol 22(1):39–46

    Article  Google Scholar 

  • Jung HS, Han YS, Chung SR, Chun BS, Lee YJ (2013) Evaluation of advanced drainage treatment for old tunnel drainage system in Korea. Tunn Undergr Space Technol 38:476–486

    Article  Google Scholar 

  • Kim KH, Park NH, Kim HJ, JHS A (2020) Modelling of hydraulic deterioration of geotextile filter in tunnel drainage system. Geotext Geomembr 48(2):210–219

    Article  Google Scholar 

  • Kozeny J (1927) Uber die kapillare Leitung des Wassers im Boden [On the capillary conduction of water in soil]. Akad Wiss Wien 136:271–306

    Google Scholar 

  • Leroueil S, Bouclin G, Tavenas F, Bergeron L, Rochelle PL (1990a) Permeability anisotropy of natural clays as a function of strain. Can Geotech J 27(5):568–579

    Article  Google Scholar 

  • Leroueil S, Magnan JP, Tavenas F (1990b) Embankments on soft clays. Ellis Horwood, Chichester, England, 360 pp

    Google Scholar 

  • Li LY, Yang JS, Gao C (2021) Simulation tests on structural deformation and seepage field of high-speed railway tunnels under drainage clogging. Chin J Geotech Eng 43(04):715–724

    Google Scholar 

  • Liu XR, Liu K, Zhong ZL, Jin M, Chen H (2017) Analytical study on seepage field of the deep tunnel with asymmetric blocked drainage system. Chin J Rock Mech Eng 36(05):1088–1100

  • Liu JQ, Chen WZ, Yuan JQ, Li CJ, Zhang QY, Li XF (2018) Groundwater control and curtain grouting for tunnel construction in completely weathered granite. Bull Eng Geol Environ 77(02):515–531

  • Lv YX, Jiang YJ, Hu W, Cao M, Mao Y (2020) A review of the effects of tunnel excavation on the hydrology, ecology, and environment in karst areas: current status, challenges, and perspectives. J Hydrol 586:124891

  • Ma D, Rezania M, Yu HS (2017) Variation of hydraulic properties of granular sandstones during water inrush: effect of small particle migration. Eng Geol 217:61–70

    Article  Google Scholar 

  • Park KH, Adisom O, Lee JG (2007) Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit. Tunn Undergr Space Technol 23(2):206–209

    Article  Google Scholar 

  • Rinder T, Dietzel M, Leis A (2013) Calcium carbonate scaling under alkaline conditions: case studies and hydrochemical modelling. Appl Geochem 35:132–141

    Article  Google Scholar 

  • Sembenelli PG, Sembenelli G (1999) Deep jet-grouted cut-offs in riverine alluvia for Ertan cofferdams. J Geotech Geoenviron 125(2):142–153

    Article  Google Scholar 

  • Szukalski BW (2002) Introduction to cave and karst GIS. J Cave Karst Stud 64(1):3

    Google Scholar 

  • Tavenas F, Jean P, Leblond J (1983) The permeability of natural soft clays, part II: permeability characteristics. Can Geotech J 20:645–660

    Article  Google Scholar 

  • Tao XL, Ma JR, Zeng W (2015) Treatment effect investigation of underground continuous impervious curtain application in water-rich strata. Int J Min Sci Technol 25(6):975–981

    Article  Google Scholar 

  • Taylor DW (1948) Fundamentals of soil mechanics. Wiley, New York, 700 pp

    Google Scholar 

  • Tian Y, Chen WZ, Tian H (2020) Study on design of buffer layer yielding support considering time-effect weakening of soft rock strength. Rock Soil Mech 41(S1):237–245

    Google Scholar 

  • Wang W, Ding ZY, Guo ZY, Zhang HT, Luo Q (2004) Test research on penetrative and filtration properties of nonwoven geotextile. China J Highway Transport 03:9–12

    Google Scholar 

  • Wu Z, Yujun C, Guimond-Barrett A, Moreno MM, Yongfeng D (2019) Role of surrounding soils and pore water in calcium carbonate precipitation in railway tunnel drainage system. Transport Geotech 21:100257

    Article  Google Scholar 

  • Yan CL, Ding DX, Bi ZW (2005) Viscoelastic mechanical analysis of the stability of surrounding rock in deep tunnels. J Guizhou Univ Technol: Nat Sci Edit 34(3):125–129

    Google Scholar 

  • Yee E, Lee JW, Lim DS (2012) Magnetic water treatment to inhibit calcium carbonate scale deposition in the drainage system of an old tunnel in Seoul, South Korea. Adv Mater Res 594-597:2045–2055

    Article  Google Scholar 

  • Zhai YF (2003) Seepage mechanics. Petroleum Industry Press, Beijing, 17 pp

    Google Scholar 

  • Zhang B, Wang HX, Ye YW (2017) Potential hazards to a tunnel caused by adjacent reservoir impoundment. Bull Eng Geol Environ 78(1):397–415

    Article  Google Scholar 

  • Zlobin GA, Kulakov VV (2015) Geohydrological situation at the Kuznetsovskii Tunnel, northern Sikhote Alin. Water Res 42(7):876–888

    Article  Google Scholar 

Download references

Funding

This paper was jointly funded by the National Natural Science Foundation (51978668) and the Provincial Natural Science Foundation (DFH (201904) ys1-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengtao An.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, P., Fu, H., Chen, L. et al. Analysis of water gushing after blockage of a drainage system in a deeply buried tunnel. Hydrogeol J 30, 2153–2162 (2022). https://doi.org/10.1007/s10040-022-02537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02537-x

Keywords

Navigation