Skip to main content

Advertisement

Log in

High Plains groundwater isotopic composition in northeastern New Mexico (USA): relationship to recharge and hydrogeologic setting

Composition isotopique des eaux souterraines des Hautes Plaines au nord-est du Nouveau-Mexique (Etats-Unis d’Amérique): relations avec la recharge et les caractéristiques hydrogéologiques

Composición isotópica de las aguas subterráneas de las High Plains en el noreste de New Mexico (EEUU): relación con la recarga y el marco hidrogeológico

美国新墨西哥州东北部高平原地下水的同位素组成:与补给和水文地质条件的关系

Composição isotópica da água subterrânea das Altas Planícies no nordeste do novo México (EUA): relação com a recarga e o ambiente hidrogeológico

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In the High Plains (HP) region of northeastern New Mexico (NE NM), USA, underlying bedrock aquifers are utilized where the High Plains Aquifer is thin, absent, or unsaturated. These usage patterns, aquifer depletion, and increasing regional aridity imply that NE NM is a possible analogy for more easterly portions of the central HP. To examine the relationship between recharge, residence time, and hydrogeologic setting, 85 well and spring samples were analyzed for environmental tracers (δD, δ18O, δ13C, and limited tritium and carbon-14 activities). Approximately half of the wells were open to strata of the Dakota Group. δD was −105.0 to −41.7‰ (median −58.2‰) and δ18O was −13.7 to −4.4‰ (median −8.1‰). Overall, isotopic composition is correlated with elevation and influenced by hydrogeologic setting. Ten anomalously depleted waters, most near volcanic-capped mesas, may represent higher-elevation or winter-biased recharge, a different modern precipitation source, or recharge from a cooler climate. Recharge, estimated by chloride mass balance using groundwater chloride concentrations, averages 6 mm/year below 2,000-m elevation and 16 mm/year above 2,000 m. Tritium (nondetectable to 5.7 tritium units) and carbon-14 activities (modern carbon fraction 0.23–1.05) suggest that Holocene to modern waters occur, possibly as mixtures, and that alluvial channels and other surficial features promote recharge, likely at higher rates than regional averages. It is noteworthy that isotopically depleted waters in this study tended to be tritium-free. Additional residence time tracers and seasonal precipitation isotopic sampling could address recharge and the origin of depleted waters.

Résumé

Dans la région des Hautes Plaines (HP) du nord-est du Nouveau Mexique (NE NM), Etats-Unis d’Amérique, les aquifères du substrat rocheux sont utilisés là où l’aquifère des Hautes-Plaines est de faible épaisseur, absent ou non saturé. Ces modes d’utilisation, la baisse des niveaux d’eau dans l’aquifère, et l’augmentation de l’aridité régionale indiquent qu’il est possible d’y voir une possible analogie entre le NE NM et les parties plus à l’est de la partie centrale des HP. Pour examiner les relations entre la recharge, le temps de résidence, et les paramètres hydrogéologiques, 85 échantillons d’eau de puits et de sources ont fait l’objet d’analyse des traceurs environnementaux suivants (δD, δ18O, δ13C, et activité en tritium et carbone-14). Approximativement la moitié des puits capte les formations du groupe Dakota. Le δD est compris entre –105.0 à –41.7‰ (médiane –58.2‰) et le δ18O entre –13.7 et –4.4‰ (médiane –8.1‰). Globalement, la composition isotopique est corrélée à l’altitude et influencée par les paramètres hydrogéologiques. Les 10 eaux anormalement appauvries, la plupart situées près des mesas recouvertes de formations volcaniques, pourraient représenter des altitudes élevées ou une recharge hivernale dominante, une origine de pluies actuelles différentes ou une recharge sous un climat plus froid. La recharge moyenne, estimée par le bilan de masse des chlorures en utilisant les concentrations en chlorure des eaux souterraines, est de 6 mm/an à une altitude inférieure à 2,000 m et 16 mm/an au-dessus de 2,000 m. Le tritium (inférieur à la limite de détection à 5.7 unités tritium) et les activités de carbone-14 (fraction du carbone moderne entre 0.23–1.05) suggère une recharge de l’Holocène jusqu’à aujourd’hui, sans doute avec des mélanges, et avec les chenaux de rivières et autres éléments de surface favorisant la recharge, probablement à de plus forts taux que les moyennes régionales. Il est à noter que les eaux isotopiquement appauvries de cette étude sont globalement sans tritium. Des traceurs additionnels de temps de résidence et un échantillonnage des pluies saisonnières pour analyses isotopiques pourraient répondre à la question de la recharge et de l’origine des eaux isotopiquement appauvries.

Resumen

En la región de las High Plains (HP) del noreste de New Mexico (NE NM), EEUU, los acuíferos del basamento subyacente se utilizan donde el acuífero de las High Plains tiene un escaso espesor, está ausente o no está saturado. Estos patrones de uso, el agotamiento del acuífero y la creciente aridez regional implican que el NE NM es una posible analogía de las porciones más orientales del HP central. Para examinar la relación entre la recarga, el tiempo de residencia y el marco hidrogeológico, se analizaron 85 muestras de pozos y manantiales en busca de trazadores ambientales ((δD, δ18O, δ13C y actividades de tritio y carbono-14). Aproximadamente la mitad de los pozos estaban abiertos en estratos del Grupo Dakota. δD fue de –105.0 a –41.7‰ (mediana de –58.2‰) y δ18O fue de −13.7 a –4.4‰ (mediana de –8.1‰). En general, la composición isotópica está correlacionada con la elevación e influenciada por el marco hidrogeológico. Diez muestras de aguas anómalas, la mayoría cerca de las mesetas de origen volcánico, pueden representar una recarga a mayor altitud o con sesgo invernal, una fuente de precipitación moderna diferente o una recarga procedente de un clima más frío. La recarga, estimada por el balance de masas de cloruro utilizando las concentraciones de cloruro de las aguas subterráneas, tiene un promedio de 6 mm/año por debajo de los 2,000 m de altitud y 16 mm/año por encima de los 2,000 m. Las actividades de tritio (no detectable hasta 5.7 unidades de tritio) y de carbono-14 (fracción de carbono moderno 0.23–1.05) sugieren que las aguas del Holoceno a las modernas ocurren, posiblemente como mezclas, y que los canales aluviales y otras características superficiales promueven la recarga, probablemente a tasas más altas que los promedios regionales. Cabe destacar que las aguas isotópicamente empobrecidas en este estudio tendían a no tener tritio. Otros trazadores de tiempo de residencia y el muestreo isotópico de las precipitaciones estacionales podrían abordar la recarga y el origen de las aguas empobrecidas.

摘要

在美国新墨西哥州东北部(NE NM)的高平原(HP)地区, 在高平原含水层薄、缺失或不饱和的下伏基岩含水层被开发利用。开发利用方式, 含水层枯竭和区域干旱加剧, 意味着NE NM可能与中部HP偏东地区情况类似。为了分析补给、滞留时间和水文地质条件之间的关系, 分析了85口井和泉水样品的环境示踪剂(δD, δ18O, δ13C以及较少的氚和碳–14活度)。大约一半的井到达Dakota Group组地层。δD为–105.0至–41.7‰(中位数–58.2‰), δ18O为–13.7至–4.4‰(中位数–8.1‰)。总体而言, 同位素组成与海拔高度相关, 并受水文地质条件影响。十个极度耗竭的水域(大多数接近火山覆盖的台地)可能代表着海拔较高或冬季偏向的补给, 不同的现代降水源或较凉爽的气候补给。通过使用地下水中氯化物的氯质量平衡法来估算补给量, 在海拔2,000 m以下平均补给6 mm/year, 在海拔2,000 m以上平均补给16 mm/year。氚(不可检测限为5.7氚单位)和碳–14活度(现代碳分数为0.23–1.05)表明, 全新世可能以混合物的形式出现于现代水域, 冲积通道和其他地表特征促进了补给, 其速率可能高于区域性平均值。值得注意的是, 在这项研究中, 同位素贫化的水倾向于不含氚。增加的滞留时间示踪和季节性降水同位素采样可以确定枯竭水的补给和来源。

Resumo

Na região das Altas Planícies(AP) do nordeste do Novo México (NE NM), EUA, os aquíferos rochosos subjacentes são utilizados onde o Aquífero das Altas Planícies é fino, ausente ou insaturado. Esses padrões de uso, esgotamento do aquífero e aumento da aridez regional implicam que o NE do NM é uma possível analogia para porções mais a leste do AP central. Para examinar a relação entre recarga, tempo de residência e configuração hidrogeológica, 85 amostras de poços e molas foram analisadas para traçadores ambientais (δD, δ18O, δ13C e atividades limitadas de trítio e carbono-14). Aproximadamente metade dos poços foram abertos para estratos do Grupo Dakota. δD foi de –105.0 a –41.7‰ (mediana –58.2‰) e δ18O foi de –13.7 a –4.4‰ (mediana –8.1 ‰). Em geral, a composição isotópica está correlacionada com a elevação e influenciada pelo ambiente hidrogeológico. Dez águas anormalmente esgotadas, a maioria perto de planaltos com picos vulcânicos, podem representar recarga de maior altitude ou polarizada para o inverno, uma fonte de precipitação moderna diferente ou recarga de um clima mais frio. A recarga, estimada pelo balanço de massa de cloreto usando as concentrações de cloreto de água subterrânea, tem média de 6 mm/ano abaixo de 2,000 m de elevação e 16 mm/ano acima de 2,000 m. Trítio (não detectável a 5.7 unidades de trítio) e atividades de carbono-14 (fração de carbono moderna 0.23–1.05) sugerem que águas do Holoceno para modernas ocorrem, possivelmente como misturas, e que canais aluviais e outras características superficiais promovem recarga, provavelmente em taxas mais altas do que médias regionais. É digno de nota que as águas isotopicamente empobrecidas neste estudo tenderam a ser isentas de trítio. Traçadores de tempo de residência adicionais e amostragem isotópica de precipitação sazonal podem abordar a recarga e a origem das águas esgotadas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baillie MN, Hogan JF, Ekwurzel B, Wahi AK, Eastoe CJ (2007) Quantifying water sources to a semiarid riparian ecosystem, San Pedro River, Arizona. J Geophys Res 112:G03S02

    Google Scholar 

  • Bartnik SR, Hampton BA, Mack GH (2019) U-Pb detrital geochronology and provenance comparisons from the nonmarine strata of the Dakota group, Lytle sandstone, and Morrison formation in northeastern New Mexico. In: Ramos FC, Zimmerer MJ, Zeigler KE, Ulmer-Scholle DS (eds) Geology of the Raton-Clayton Area. New Mexico Geological Society Guidebook, 70th Field Conference, NM Geol. Soc., Socorro, NM, pp 55–65

  • Becker MF, Bruce BW, Pope LM, Andrews WJ (2002) Ground-water quality in the central High Plains Aquifer, Colorado, Kansas, New Mexico, Oklahoma, and Texas, 1999. US Geol Surv Water Resour Invest Rep 2002-4112

  • Chen Z, Nie Z, Zhang G, Wan L, Shen J (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River basin northwestern China. Hydrogeol J 14:1635–1651

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL

    Google Scholar 

  • Clark JF, Davisson ML, Hudson GB, Macfarlane PA (1998) Noble gases, stable isotopes, and radiocarbon as tracers of flow in the Dakota aquifer, Colorado and Kansas. J Hydrol 211:151–167

    Article  Google Scholar 

  • Crosbie RS, Scanlon BR, Mpelasoka FS, Reedy RC, Gates JB, Zhang L (2013) Potential climate change effects on groundwater recharge in the High Plains aquifer, USA. Water Resour Res 49:3936–3951

    Article  Google Scholar 

  • Doctor DH, Kendall C, Sebestyen SD, Shanley JB, Ohte N, Boyer EW (2008) Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol Process 22:2410–2423

    Article  Google Scholar 

  • Dutton AR (1995) Groundwater isotopic evidence for paleorecharge in U.S. High Plains aquifers. Quat Res 43:221–231

    Article  Google Scholar 

  • Dutton A, Wilkinson BH, Welker JM, Bowen GJ, Lohmann KC (2005) Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrol Process 19:4121–4146

    Article  Google Scholar 

  • Earman S, Campbell AR, Phillips FM, Newman BD (2006) Isotopic exchange between snow and atmospheric water vapor: estimation of the snowmelt component of groundwater recharge in the southwestern United States. J Geophys Res 111:D09302

    Google Scholar 

  • Eastoe CJ, Dettman DL (2016) Isotope amount effects in hydrologic and climate reconstructions of monsoon climates: implications of some long-term data sets for precipitation. Chem Geol 430:78–89

    Article  Google Scholar 

  • Eastoe CJ, Rodney R (2014) Isotopes as tracers of water origin in and near a regional carbonate aquifer: the southern Sacramento Mountains, New Mexico. Water 6:301–323

    Article  Google Scholar 

  • Eastoe C, Towne D (2018) Regional zonation of groundwater recharge mechanisms in alluvial basins of Arizona: interpretation of isotope mapping. J Geochem Explor 194:134–145

    Article  Google Scholar 

  • Eastoe CJ, Wright WE (2019) Hydrology of mountain blocks in Arizona and New Mexico as revealed by isotopes in groundwater and precipitation. Geosciences 9, Article no. 461

  • Eastoe CJ, Gu A, Long A (2004) The origins, ages and flow paths of groundwater in Tucson Basin: results of a study of multiple isotope systems. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. American Geophysical Union, Washington, DC, pp 217–234

    Chapter  Google Scholar 

  • Frappart F, Ramillien G (2018) Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: a review. Remote Sens 10, Article no. 829

  • Frisbee MD, Phillips FM, White AF et al (2013) Effect of source integration on the geochemical fluxes from springs. Appl Geochem 28:32–54

    Article  Google Scholar 

  • Gleason CL, Frisbee MD, Rademacher LK, Sada DW, Meyers ZP (2020) Hydrogeology of desert springs in the Panamint range, California, USA: identifying the sources and amount of recharge that support spring flow. Hydrol Process 34:730–748

    Article  Google Scholar 

  • Gosselin DC, Harvey FE, Frost C, Stotler R, Macfarlane PA (2004) Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA. Appl Geochem 19:359–377

    Article  Google Scholar 

  • Gurdak JJ, Roe CD (2010) Recharge rates and chemistry beneath playas of the High Plains aquifer, USA. Hydrogeol J 18:1747–1772

    Article  Google Scholar 

  • Gurdak JJ, McMahon PB, Bruce BW (2011) Vulnerability of groundwater quality to human activity and climate change and variability, High Plains aquifer, USA. In: Treidel H, Martin-Bordes JL, Gurdak JJ (eds) Climate change effects on groundwater resources: a global synthesis of findings and recommendations. Taylor and Francis, London, pp 145–168

    Google Scholar 

  • Gutentag ED, Heimes FJ, Krothe NC, Luckey RR, Weeks JB (1984) Geohydrology of the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geol Surv Prof Pap 1400-B

  • Haacker EMK, Kendall AD, Hyndman DW (2016) Water level declines in the High Plains aquifer: predevelopment to resource senescence. Groundwater 54:231–242

    Article  Google Scholar 

  • Herczeg AL, Edmunds WM (1999) Inorganic ions as tracers. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Norwell, MA, pp 31–77

    Google Scholar 

  • International Atomic Energy Agency (2009) Laser spectroscopic analysis of liquid water samples for stable hydrogen and oxygen isotopes. IAEA training course series 35. International Atomic Energy Agency, Vienna, 35 pp

  • Jasechko S (2019) Global isotope hydrogeology: review. Rev Geophys 57:835–965

    Article  Google Scholar 

  • Jasechko S, Birks SJ, Gleeson T, Wada Y, Fawcett PJ, Sharp ZD, McDonnell JJ, Welker JM (2014) The pronounced seasonality of global groundwater recharge. Water Resour Res 50:8845–8867

    Article  Google Scholar 

  • Jefferson A, Grant G, Rose T (2006) Influence of volcanic history on groundwater patterns on the west slope of the Oregon high cascades. Water Resour Res 42:W12411

    Article  Google Scholar 

  • Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393

    Article  Google Scholar 

  • Lauffenburger ZH, Gurdak JJ, Hobza C, Woodward D, Wolf C (2018) Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA. Agr Water Manage 204:69–80

    Article  Google Scholar 

  • Macfarlane PA (1995) The effect of river valleys and the upper Cretaceous aquitard on regional flow in the Dakota aquifer in the central Great Plains of Kansas and southeastern Colorado. Kansas Geol Survey Bull 238, part 2, KSG, Lawrence, KS

  • Macfarlane PA, Clark JF, Davisson ML, Hudson GB, Whittemore DO (2000) Late-Quaternary recharge determined from chloride in shallow groundwater in the central Great Plains. Quat Res 53:167–174

    Article  Google Scholar 

  • McMahon PB, Böhlke JK, Christenson SC (2004) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA. Appl Geochem 19:1655–1686

    Article  Google Scholar 

  • Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H, Blasch KW, Brookfield AE, Castro CL, Clark JF, Gochis DJ, Flint AL, Neff KL, Niraula R, Rodell M, Scanlon BR, Singha K, Walvoord MA (2016) Implications of projected climate change for groundwater recharge in the western United States. J Hydrol 534:124–138

    Article  Google Scholar 

  • Miller JA, Appel CL (1997) Ground water atlas of the United States: segment 3—Kansas, Missouri, and Nebraska. US Geol Surv Hydrol Atlas 730-D

  • National Atmospheric Deposition Program (2020a) NTN data access. http://nadp.slh.wisc.edu/data/sites/NTN/?net=NTN. Accessed 28 Nov 2020

  • National Atmospheric Deposition Program (2020b) NM12 data access. http://nadp.slh.wisc.edu/data/sites/siteDetails.aspx?net=NTN&id=NM12. Accessed 21 Dec 2020

  • Nativ R, Riggio R (1989) Meteorologic and isotopic characteristics of precipitation events with implications for groundwater recharge southern High Plains. Atmos Res 23:51–82

    Article  Google Scholar 

  • Nativ R, Riggio R (1990) Precipitation in the southern High Plains: meteorologic and isotopic features. J Geophys Res 95:22559–22564

    Article  Google Scholar 

  • Nativ R, Smith DA (1987) Hydrogeology and geochemistry of the Ogallala aquifer, southern High Plains. J Hydrol 91:217–253

    Article  Google Scholar 

  • New Mexico Bureau of Geology and Mineral Resources (2003) Geologic map of New Mexico. https://geoinfo.nmt.edu/publications/maps/geologic/state/home.cfml. Accessed 8 Jun 2020

  • Ng G-HC, McLaughlin D, Entekhabi D, Scanlon BR (2010) Probabilistic analysis of the effects of climate change on groundwater recharge. Water Resour Res 46:W07502

    Article  Google Scholar 

  • Niraula R, Meixner T, Dominguez F, Bhattarai N, Rodell M, Ajami H, Gochis D, Castro C (2017) How might recharge change under projected climate change in the Western U.S.? Geophys Res Lett 44:10407–10418

    Article  Google Scholar 

  • Ojiambo BS, Poreda RJ, Lyons WB (2001) Ground water/surface water interactions in Lake Naivasha, Kenya, using δ18O, δD, and 3H/3He age-dating. Ground Water 39:526–533

    Article  Google Scholar 

  • Phillips FM, Peeters LA, Tansey MK, Davis SN (1986) Paleoclimatic inferences from an isotopic investigation of groundwater in the Central San Juan Basin New Mexico. Quat Res 26:179–193

    Article  Google Scholar 

  • Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004a) Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. US Geol Surv Water Resour Invest Rep 03-4131

  • Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004b) Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. conceptualization of groundwater flow. Hydrogeol J 12:359–388

    Article  Google Scholar 

  • Poage MA, Chamberlain CP (2001) Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. Am J Sci 301:1–15

    Article  Google Scholar 

  • PRISM Climate Group, Oregon State University (2020) Data explorer. https://prism.oregonstate.edu/explorer/bulk.php. Accessed 28 Nov 2020

  • Rawling GC (2013) Hydrogeology of east-central Union County, northeastern New Mexico. New Mexico Bureau of Geology and Mineral Resources Open-File Report 555, NMBGMR, Socorro, NM

  • Rawling GC (2016) A hydrogeologic investigation of Curry and Roosevelt counties, New Mexico. New Mexico Bureau of Geology and Mineral Resources Open-File Report 580, NMBGMR, Socorro, NM

  • Rawling GC, Rinehart AJ (2018) Lifetime projections for the High Plains Aquifer in East-central New Mexico. New Mexico Bureau of Geology and Mineral Resources Bulletin 162, NMBGMR, Socorro, NM

  • Robson SG, Banta ER (1995) Ground-water atlas of the United States, segment 2, Arizona, Colorado, New Mexico, and Utah. US Geol Surv Hydrol Atlas 730-C

  • Rosenberg NJ, Epstein DJ, Wang D, Vail L, Srinivasan R, Arnold JG (1999) Possible impacts of global warming on the hydrology of the Ogallala aquifer region. Clim Chang 42:677–692

    Article  Google Scholar 

  • Sayre WO, Ort MH (2011) A geologic study of the Capulin Volcano National Monument and surrounding areas, Union and Colfax counties, New Mexico. New Mexico Bureau of Geology and Mineral Resources Open-File Report 541, NMBGMR, Socorro, NM

  • Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Nat Acad Sci 109:9320–9325

    Article  Google Scholar 

  • Scott GR (1986) Geologic and structure contour map of the Springer 30′ x 60′ quadrangle, Colfax, Harding, Mora, and Union Counties, New Mexico [scale 1:100,000]. US Geol Surv Miscell Invest Series I-1705

  • Scott GR, Pillmore CL (1993) Geologic and structure-contour map of the Raton 30′ x 60′ quadrangle, Colfax and Union Counties, New Mexico, and Las Animas County, Colorado [scale 1:100,000]. US Geol Surv Miscell Invest Series I-2266

  • Steward DR, Allen AJ (2016) Peak groundwater depletion in the High Plains aquifer, projections from 1930 to 2110. Agric Water Manag 170:36–48

    Article  Google Scholar 

  • US Geological Survey (2000) Principal aquifers of the 48 conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands. https://water.usgs.gov/GIS/metadata/usgswrd/XML/aquifers_us.xml. Accessed 12 Jun 2020

  • US Geological Survey (2020) The national map: data delivery. https://www.usgs.gov/core-science-systems/ngp/tnm-delivery. Accessed 3 Jun 2020

  • Vachon RW, Welker JM, White JWC, Vaughn BH (2010) Monthly precipitation isoscapes (δ18O) of the United States: connections with surface temperatures, moisture source conditions, and air mass trajectories. J Geophys Res 115:D21126

    Article  Google Scholar 

  • Wada Y, van Beek LPH, Bierkens MFP (2012) Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour Res 48:W00L06

  • Wahi AK, Hogan JF, Ekwurzel B, Baillie MN, Eastoe CJ (2008) Geochemical quantification of semiarid mountain recharge. Ground Water 46:414–425

    Article  Google Scholar 

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water 33:458–468

    Article  Google Scholar 

  • Zeigler KE, Podzemny B, Yuhas A, Blumenberg V (2019a) Groundwater resources of Union County, New Mexico: a progress report. In: Ramos FC, Zimmerer MJ, Zeigler KE, Ulmer-Scholle DS (eds) Geology of the Raton-Clayton Area. New Mexico Geological Society Guidebook, 70th Field Conference, NM Geological Society, Socorro, NM, pp 127–137

  • Zeigler KE, Ramos FC, Zimmerer MJ (2019b) Geology of northeastern New Mexico, Union and Colfax Counties, New Mexico: a geologic summary. In: Ramos FC, Zimmerer MJ, Zeigler KE, Ulmer-Scholle DS (eds) Geology of the Raton-Clayton Area. New Mexico Geological Society Guidebook, 70th Field Conference, NM Geological Society, Socorro, NM, pp 47–54

Download references

Acknowledgments

Laboratory assistance was provided by Jonathan Watkins. The authors also thank landowners that allowed wells and springs to be sampled for this study, as well as the Northeastern and Mora-Wagon Mound Soil and Water Conservation Districts, and Colfax County for assistance recruiting landowners. We thank private landowners in Harding County that funded previous carbon-14 and tritium analyses. Finally, we thank Randy Stotler and two anonymous reviewers for their detailed and constructive comments.

Funding

This research was supported by a Geological Society of America student research grant, by the University of North Carolina at Charlotte, and by the Will and Cara Harman scholarship from the Department of Geography and Earth Sciences of the University of North Carolina at Charlotte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Vinson.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, V.A., Zeigler, K.E. & Vinson, D.S. High Plains groundwater isotopic composition in northeastern New Mexico (USA): relationship to recharge and hydrogeologic setting. Hydrogeol J 29, 1445–1461 (2021). https://doi.org/10.1007/s10040-021-02329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02329-9

Keywords

Navigation