Skip to main content

Advertisement

Log in

Chemical and isotopic constraints on the origin of saline waters from a hot spring in the eastern coastal area of China

Limites chimiques et isotopiques de l’origine des eaux salées d’une source chaude de la région côtière de l’est de la Chine

Condicionantes químicos e isotópicos del origen de las aguas salinas de una manantial termal en la zona costera oriental de China

中国东部沿海地区温泉咸水成因的化学和同位素约束

Restrições químicas e isotópicas na origem de águas salinas de uma fonte termal na zona costeira oriental da China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Jimo hot spring in Shandong Peninsula, China, is a typical coastal geothermal system. The geothermal water has a very high salinity (10.8 g/L) and the origin of the salt is key to utilization of this geothermal resource. A systematic investigation of the hydrochemistry and isotopes (δ11B, 87Sr/86Sr, δ18O, δD, 13CDIC and 14CDIC) of water from 14 geothermal wells was conducted. The results show that the geothermal waters from the high-temperature center and eastern part of the geothermal field are Cl-Na·Ca-type waters with Br/Cl (8 × 10−4–1.0 × 10−3), Na/Cl (0.63–0.70) and δ11B values (15.9–17.2‰) that are lower than those of seawater. The western geothermal waters are dominated by Cl-Na-type waters with Br/Cl and Na/Cl values similar to those of seawater. The depleted δD and δ18O compositions and the corrected 14CDIC age suggest that Jimo geothermal waters are mixtures of late Pleistocene to early Holocene and younger meteoric waters. An improved Br/Cl-Na/Cl diagram, ion mass balance calculations and δ11B values indicate that halite and K-salt dissolution and subsequent cation exchange formed the dominant Cl-Na·Ca-type geothermal water, and this was then modified into a small amount of Cl-Na-type water in the western area by mixing with minor seawater entrapped in the unconsolidated sediments. The 87Sr/86Sr ratios (0.710613–0.710726) of the geothermal waters reflect water–rock reactions in the sandstone. The improved Br/Cl-Na/Cl diagram, Piper plot and boron isotopic dataset containing saline waters from coastal geothermal systems worldwide further confirm that the salinity in the Jimo geothermal water originated from dissolution of marine evaporites.

Résumé

La source chaude de Jimo, dans la Péninsule du Shandong (Chine), est un système géothermal côtier typique. L’eau géothermale a une salinité très élevée (10.8 g/L) et l’origine du sel est un point important de l’utilisation de cette ressource géothermale. Un examen systématique de l’hydrogéochimie et des isotopes (δ11B, 87Sr/86Sr, δ18O, δD, 13CDIC and 14CDIC) de l’eau de 14 forages géothermaux a été opéré. Les résultats montrent que les eaux géothermales du centre à haute-température et de la partie est du champ géothermal sont des eaux de type Cl-Na-Ca avec des valeurs Br/Cl (8 × 10–4–1.0 × 10–3), Na/Cl (0.63–0.70) and δ11B values (15.9–17.2‰) inférieures à celles de l’eau de mer. Les eaux géothermales de l’ouest sont dominées par des eaux de type Cl-Na avec des valeurs de Br/Cl et Na/Cl comparables à celles de l’eau de mer. La composition appauvrie en δD and δ18O et l’âge 14CDIC corrigé suggèrent que les eaux géothermales de Jimo sont des mélanges d’eaux de la fin du Pliocène - début de l’Holocène et d’eaux météoriques plus récentes. Le diagramme Br/Cl-Na/Cl amélioré, les calculs du bilan de masse ionique et des valeurs de δ11B indiquent que la dissolution de l’halite et du sel de K et l’échange de cation subséquent ont produit une eau géothermale de type Cl-Na-Ca dominant et que celle-ci a été modifiée ensuite par l’apport d’une petite quantité d’eau de type Cl-Na dans la zone ouest, par mélange d’une eau à rapport Br/Cl-Na/Cl amélioré avec une eau de mer en faible quantité piégée dans des sédiments non consolidés. Les teneurs en 87Sr/86Sr (0.710613–0.710726) des eaux géothermales traduisent des réactions eau–roche dans les grès. Le diagramme Br/Cl-Na/Cl amélioré, le diagramme de Piper et la base de données sur les isotopes du bore, intégrant les eaux salines provenant des systèmes géothermaux côtiers du monde entier, confirment encore davantage que la salinité de l’eau géothermale de Jimo provient de la dissolution d’évaporites marines.

Resumen

El manantial termal de Jimo en la península de Shandong, China, es un típico sistema geotérmico costero. El agua geotérmica tiene una salinidad muy alta (10,8 g/L) y el origen de la sal es clave para la utilización de este recurso. Se llevó a cabo una investigación sistemática de la hidroquímica y los isótopos (δ11B, 87Sr/86Sr, δ18O, δD, 13CDIC y 14CDIC) del agua de 14 pozos geotérmicos. Los resultados muestran que las aguas geotérmicas del centro de alta temperatura y de la parte oriental del campo geotérmico son aguas de tipo Cl-Na-Ca con valores de Br/Cl (8 × 10–4–1.0 × 10–3), Na/Cl (0.63–0.70) y δ11B (15.9–17.2‰) que son inferiores a los del agua de mar. Las aguas geotérmicas occidentales están dominadas por aguas de tipo Cl-Na con valores de Br/Cl y Na/Cl similares a los del agua de mar. Las composiciones empobrecidas de δD y δ18O y la edad corregida del 14CDIC sugieren que las aguas geotérmicas de Jimo son mezclas de aguas meteóricas de finales del Pleistoceno a principios del Holoceno y más jóvenes. Un diagrama Br/Cl-Na/Cl mejorado, los cálculos de balance de masa iónica y los valores de δ11B indican que la disolución de halita y de la sal de K y el subsiguiente intercambio catiónico formaron el agua geotérmica dominante de tipo Cl-Na-Ca, y ésta fue luego modificada en una pequeña cantidad de agua de tipo Cl-Na en la zona occidental al mezclarse con agua de mar menor atrapada en los sedimentos no consolidados. Las proporciones 87Sr/86Sr (0.710613–0.710726) de las aguas geotérmicas reflejan las reacciones agua–roca en la arenisca. El diagrama mejorado de Br/Cl-Na/Cl, el gráfico de Piper y el conjunto de datos isotópicos de boro que contiene las aguas salinas de los sistemas geotérmicos costeros de todo el mundo confirman aún más que la salinidad en el agua geotérmica de Jimo se originó por la disolución de evaporitas marinas.

摘要

中国山东半岛即墨温泉是典型的沿海地热系统。地热水具有很高的盐度(10.8 g/L),而盐的来源是利用这种地热资源的关键。对14口地热井水的水化学和同位素(δ11B, 87Sr/86Sr, δ18O, δD, 13CDIC14CDIC)进行了系统研究。结果表明,温度场高温中心和东部的地热水为Cl-Na·Ca型水,Br/Cl(8 × 10–4–1.0 × 10–3),Na/Cl(0.63–0.70)和δ11B值(15.9–17.2‰)低于海水。西部地热水以Cl-Na型水为主,Br/Cl和Na/Cl值与海水相似。贫化的δD和δ18O值以及校正的14CDIC年龄表明,即墨地热水是晚更新世至全新世早期和较年轻的大气降水的混合物。改进的Br/Cl-Na/Cl图,离子质量平衡计算和δ11B值表明,岩盐和钾盐的溶解以及随后的阳离子交换形成了主导的Cl-Na·Ca型地热水,然后通过与未固结沉积物中夹带的少量海水混合,在西部地区形成少量Cl-Na型水。地热水的87Sr/86Sr比(0.710613–0.710726)反映了砂岩中的水岩反应。改进的Br/Cl-Na/Cl图,Piper图和含有来自全世界沿海地热系统的咸水的硼同位素数据集进一步证实,即墨地热水中的盐分来源于海相蒸发岩的溶解。

Resumo

A fonte termal de Jimo na península de Shandong, na China, é um sistema geotérmico costeiro típico. A água geotérmica possui uma salinidade muito alta (10.8 g/L) e a origem do sal é essencial para a utilização desse recurso geotérmico. Foi conduzida uma investigação sistemática da hidroquímica e isótopos (δ11B, 87Sr/86Sr, δ18O, δD, 13CDIC e 14CDIC) da água de 14 poços geotérmicos. Os resultados mostram que as águas geotérmicas do centro de alta temperatura e da parte leste do campo geotérmico são águas do tipo Cl-Na·Ca com valores Br/Cl (8 × 10–4–1.0 × 10–3), Na/Cl (0.63–0.70) e δ11B (15.9–17.2‰) inferiores aos da água do mar. As águas geotérmicas ocidentais são dominadas por águas do tipo Cl-Na com valores de Br/Cl e Na/Cl semelhantes aos da água do mar. As composições δD δ18O depletadas e a idade 14CDIC corrigida sugerem que as águas geotérmicas de Jimo são misturas do Pleistoceno tardio ao Holoceno inicial e às águas meteorológicas mais jovens. Um diagrama Br/Cl-Na/Cl aprimorado, cálculos do balanço de massa de íons e valores de δ11B indicam que a dissolução do halito e do sal K e a subsequente troca catiônica formaram a água geotérmica dominante do tipo Cl-Na·Ca, e isso foi modificado para pequena quantidade de água do tipo Cl-Na na área ocidental, misturando com água do mar menor aprisionada nos sedimentos não consolidados. As razões 87Sr/86Sr (0.710613–0.710726) das águas geotérmicas refletem as reações rocha–água no arenito. O diagrama Br/Cl-Na/Cl aprimorado, o gráfico de Piper e o conjunto de dados isotópico de boro contendo águas salinas de sistemas geotérmicos costeiros em todo o mundo confirmam ainda que a salinidade na água geotérmica de Jimo se originou da dissolução de evaporitos marinhos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggarwal JK, Palmer MR, Bullen TD, Arnórsson S, Ragnarsdóttir KV (2000) The boron isotope systematics of Icelandic geothermal waters: 1. meteoric water charged systems. Geochim Cosmochim Acta 64:579–585

    Google Scholar 

  • Alcalá FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359:189–207. https://doi.org/10.1016/j.jhydrol.2008.06.028

    Article  Google Scholar 

  • Avşar Ö, Kurtuluş B, Gürsu S, Kuşcu GG, Kaҫaroğlu F (2016) Geochemical and isotopic characteristics of structurally controlled geothermal and mineral waters of Muğla (SW Turkey). Geothermics 64:466–481

    Google Scholar 

  • Awaleh MO, Boschetti T, Soubaneh YD, Kim Y, Baudron P, Kawalieh AD, Ahmed MM, Daoud MA, Dabar OA, Kadieh IH, Adiyaman Ö, Elmi SA, Chirdon MA (2018) Geochemical, multi-isotopic studies and geothermal potential evaluation of the complex Djibouti volcanic aquifer (Republic of Djibouti). Appl Geochem 97:301–321

    Google Scholar 

  • Bagheri R, Nadri A, Raeisi E, Eggenkamp HGM, Kazemi GA, Montaseri A (2014) Hydrochemical and isotopic (δ18O, δ2H, 87Sr/86Sr, δ37Cl and δ81Br) evidence for the origin of saline formation water in a gas reservoir. Chem Geol 384:62–75

    Google Scholar 

  • Barth S (1993) Boron isotope variations in nature: a synthesis. Geol Rundsch 82:640–651

    Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519

    Google Scholar 

  • Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. Oklahoma Geol Surv Bull 79:60–77

    Google Scholar 

  • Chandrajith R, Barth JAC, Subasinghe ND, Merten D, Dissanayake CB (2013) Geochemical and isotope characterization of geothermal spring waters in Sri Lanka: evidence for steeper than expected geothermal gradients. J Hydrol 476:360–369

    Google Scholar 

  • Chatterjee S, Arzoo Ansari M, Deodhar AS, Sinha UK, Dash A (2017) A multi-isotope approach (O, H, C, S, B and Sr) to understand the source of water and solutes in some the thermal springs from west coast geothermal area, India. Arab J Geosci 10:242. https://doi.org/10.1007/s12517-017-3022-0

    Article  Google Scholar 

  • Chen L, Ma T, Dua Y, Xiao C, Chen X, Liu C, Wang Y (2016) Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of southwestern Guangdong Province. China J Volcanol Geotherm Res 318:45–54

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 328 pp

    Google Scholar 

  • Craig H (1961) Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133(3467):1833–1834

    Google Scholar 

  • David OK, Sass E, Katz A (2004) The evolution of marine evaporitic brines in inland basins: the Jordan–Dead Sea Rift Valley. Geochim Cosmochim Acta 68(8):1763–1775

    Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:338–350. https://doi.org/10.1111/j.1745-6584.1998.tb01099.x

    Article  Google Scholar 

  • Dotsika E, Leontiadis I, Poutoukis D, Cioni R, Raco B (2006) Fluid geochemistry of the Chios geothermal area, Chios Island, Greece. J Volcanol Geotherm Res 154(3–4):237–250

    Google Scholar 

  • Duriez A, Marlin C, Dotsika E, Massault M, Noret A, Morel JL (2008) Geochemical evidence of seawater intrusion into a coastal geothermal field of central Greece: example of the Thermopylae system. Environ Geol 54:551–564

    Google Scholar 

  • Eastoe CJ, Long A, Land LS, Kyle JR (2001) Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: brine genesis. Chem Geol 176:343–360

    Google Scholar 

  • Fang B (2006) Perspective prognosis on geothermal resource in synthetic information in Shandong province. PhD Thesis, Jilin University, China

  • Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France: 1. brines associated with Triassic salts. Chem Geol 109:149–175

    Google Scholar 

  • Fu Y, Yu Z (2010) Metamorphosed marine clastic rocks in Qingdao: tectonic attribute and implication. Chin J Geol 45(1):207–227

    Google Scholar 

  • Guo Z, Sun X (1985) Discovery of oolitic limestone gravels and foraminifer and fusulinid fossils in the upper Jurassic on the southern margin of the Jiaolai depression, eastern Shandong and their tectonic significance. Geol Rev 31(2):179–183

    Google Scholar 

  • Han D, Currell MJ (2018) Delineating multiple salinization processes in a coastal plain aquifer, northern China: hydrochemical and isotopic evidence. Hydrol Earth Syst Sci 22:3473–3491

    Google Scholar 

  • Horner KN, Short MA, McPhail DC (2017) Chloride and bromide sources in water: quantitative model use and uncertainty. J Hydrol 549:571–580

    Google Scholar 

  • Huang T, Pang Z (2011) A combined conceptual model (V&P model) to correct groundwater radiocarbon age. In: Proceedings of international symposium on water resource and environmental protection, Xi'an, Shaanxi, China, May 20–22, 2011. IEEE Press 1:28–30. https://doi.org/10.1109/ISWREP.2011.5892937

    Article  Google Scholar 

  • Jørgensen NO, Andersen MS, Engesgaard PE (2008) Investigation of a dynamic seawater intrusion event using strontium isotopes (87Sr/86Sr). J Hydrol 348:257–269

    Google Scholar 

  • Kesler SE, Martini AM, Appold MS, Walter LM, Huston TJ, Furman FC (1996) Na-cl-Br systematics of fluid inclusions from Mississippi Valley-type deposits, Appalachian Basin: constraints on solute origin and migration paths. Geochim Cosmochim Acta 60:225–233

    Google Scholar 

  • Kloppmann W, Négrel P, Casanova J, Klinge H, Schelkes K, Guerrot C (2001) Halite dissolution derived brines in the vicinity of a Permian salt dome (N German Basin): evidence from boron, strontium, oxygen and hydrogen isotopes. Geochim Cosmochim Acta 65:4087–4101

    Google Scholar 

  • Knauth LP, Beeunas MA (1986) Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochim Cosmochim Acta 50:419–433

    Google Scholar 

  • Labotka DM, Panno SV, Locke RA, Jared T, Freiburg JT (2015) Isotopic and geochemical characterization of fossil brines of the Cambrian Mt. Simon sandstone and Ironton-Galesville formation from the Illinois Basin, USA. Geochim Cosmochim Acta 165:342–360

    Google Scholar 

  • Lashin A, Chandrasekharam D, Al Arifi N, Al Bassam A, Varun C (2014) Geothermal energy resources of Wadi Al-Lith, Saudi Arabia. J Afr Earth Sci 97:357–367

    Google Scholar 

  • Li J (2006) Sedimentary analysis and tectonic evolution of the Jiaolai Basin. PhD Thesis, Chinese Academy of Geological Sciences, China

  • Li CF, Chu ZY, Guo JH, Li YL, Yang YH, Li XH (2015) A rapid single column separation scheme for high-precision Sr–Nd–Pb isotopic analysis in geological samples using thermal ionization mass spectrometry. Anal Methods 7:4793–4802

    Google Scholar 

  • Liu Y, Cao L, Li Z, Wang H, Chu T, Zhang J (1985) Element geochemistry (in Chinese). Science Press, Beijing

    Google Scholar 

  • Liu Y, Fu Y, Wu S (2009a) δD and δ18O compositions in geothermal water of Jimo hot spring and its geological significance. Coast Eng 28(2):52–60

    Google Scholar 

  • Liu JR, Song XF, Yuan GF, Liu X, Wang S (2009b) Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources. Chin Sci Bull 54(22):3521–3531. https://doi.org/10.1007/s11434-009-0202-7

    Article  Google Scholar 

  • Liu Y, Cao X, Fu Y, Wu S (2010) Dynamic change characteristics of geothermal water quality in Jimo Hot Springs. Land Resour Shandong Province 26(2):19–24

    Google Scholar 

  • Lu G, Liu R (2015) Aqueous chemistry of typical Geothermal Springs with deep faults in Xinyi and Fengshun in Guangdong Province, China. J Earth Sci 26(1):060–072

    Google Scholar 

  • Lüders V, Plessen B, Romer RL, Weise SM, Banks DA, Hoth P, Dulski P, Schettler G (2010) Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the north German Basin. Chem Geol 276:198–208

    Google Scholar 

  • Lv H, Zhang H, Wang J, Zhang S, Dong X, Zhang X (2012) Discovery of large slump blocks in late Mesozoic turbidites in Lingshan Island, Jiaonan block of Shandong province (in Chinese with English abstract). Geol Rev 58(1):80–81

    Google Scholar 

  • MacCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Brand K+ with halite. J Sediment Petrol 57:928–937

    Google Scholar 

  • Magri F, Akar T, Gemici U, Pekdeger A (2012) Numerical investigations of fault-induced seawater circulation in the Seferihisar-Balçova geothermal system, western Turkey. Hydrogeol J 20(1):103–118

    Google Scholar 

  • Mahlknecht J, Merchán D, Rosner M, Meixner A, Ledesma-Ruiz R (2017) Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater. Sci Total Environ 587–588:282–295

    Google Scholar 

  • McNutt RH (2000) Strontium isotopes. In: Herczeg A, Cook P (ed) Environmental tracers in groundwater hdrology. Kluwer, Boston, pp 233–260

    Google Scholar 

  • Musashi M, Nomura M, Okamoto M, Ossaka T, Oi T, Kakihana H (1988) Regional variation in the boron isotopic composition of hot spring waters from central Japan. Geochem J 22:205–214

    Google Scholar 

  • Oi T, Ikeda K, Nakano M, Ossaka T, Ossaka J (1996) Boron isotope geochemistry of hot spring waters in Ibusuki and adjacent areas, Kagoshima, Japan. Geochem J 30:273–287

    Google Scholar 

  • Palmer MR (1991) Boron isotope systematics of hydrothermal fluids and tourmalines: a synthesis. Chem Geol (Isotope Geosci Sect) 94:111–121

    Google Scholar 

  • Pang Z (1987) Zhangzhou basin geothermal system-Genesis model, energy potential and the occurrence of thermal water. PhD Thesis, Institute of Geology and Geophysics, Chinese Academy of Science, China

  • Pang Z, Wang J (1995) Application of isotope and geochemical techniques to geothermal exploration: the Zhangzhou case. In: Proceedings of the World Geothermal Congress. Geothermal Assoc., Bonn, Germany, pp 1037–1042

  • Pang ZH, Wang JY, Zhao P, Jin J (1995) Saline thermal waters from geothermal systems in the granitic terrain (Zhangzhou geothermal system and surroundings, southeast of China): 1, origin and recharge of the thermal water traced by oxygen and hydrogen isotopes. Geotherm Sci Tech 4:273–286

    Google Scholar 

  • Risacher F, Fritz B, Hauser A (2011) Origin of components in Chilean thermal waters. J S Am Earth Sci 31(1):153–170

    Google Scholar 

  • Saibi H, Ehara S (2010) Temperature and chemical changes in the fluids of the Obama geothermal field (SW Japan) in response to field utilization. Geothermics 39(3):228–241

    Google Scholar 

  • Scholler H (1967) Qualitative evaluation of groundwater resource: methods and techniques of groundwater investigation and development. Water Res 33:44–52

    Google Scholar 

  • Shand P, Darbyshire DPF, Love AJ, Edmunds WM (2009) Sr isotopes in natural waters: applications to source characterisation and water–rock interaction in contrasting landscapes. Appl Geochem 24:574–586

    Google Scholar 

  • Swihart GH, Moore PB (1986) Boron isotopic composition of marine and non-marine evaporites borates. Geochim Cosmochim Acta 50(6):1297–1301

    Google Scholar 

  • Taberner C, Cendón DI, Pueyo JJ, Ayora C (2000) The use of environmental markers to distinguish marine vs. continental deposition and to quantify the significance of recycling in evaporite basins. Sediment Geol 137:213–240

    Google Scholar 

  • Tian S (2012) The study on the mechanism of structural geothermal fields of Weihai. MSc Thesis, University of Jinan, China

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Google Scholar 

  • Vengosh A, Starinsky A, Kolodny Y, Chivas AR (1991) Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochim Cosmochim Acta 55:1689–1695

    Google Scholar 

  • Vengosh A, Starinsky A, Kolodny Y, Chivas AR, Raab M (1992) Boron isotope variations during fractional evaporation of sea water: new constraints on the marine vs. nonmarine debate. Geol 20:799–802

    Google Scholar 

  • Vengosh A, Chivas AR, Starinsky A, Kolodny Y, Zhang B, Zhang P (1995) Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China. Chem Geol 120:135–154

    Google Scholar 

  • Vengosh A, Helvac C, Karamanderesi SH (2002) Geochemical constraints for the origin of thermal waters from western Turkey. Appl Geochem 17(3):163–183

    Google Scholar 

  • Wan Y (1986) Holocene Sea level changes off the coast of Qingdao. Coast Eng 5(3):48–57

    Google Scholar 

  • Wan Y, Zhang Q (1987) Study on the origin of the warm springs in the Wenquan town, Jimo country, Qingdao. J Oceanogr Huanghai Bohai Seas 5(3):27–32

    Google Scholar 

  • Wang X (2018a) Formation conditions and hydrogeochemical characteristics of the geothermal water in typical coastal geothermal field with deep faults, Guangdong Province. PhD Thesis, China University of Geosciences, China

  • Wang XY (2018b) A study of the characteristics and genesis of the hot springs in the western Shandong Peninsula. MSc Thesis, China University of Geosciences (Beijing), China

  • Wang QZ, Xiao YK, Wang YH, Zhang CG, Wei HZ (2002) Boron separation by the two-step ion-exchange for the isotopic measurement of boron. Chin J Chem 20(1):45–50

    Google Scholar 

  • Wang J, Chang S, Lu H, Zhang H (2014) Detrital zircon U-Pb age constraints on cretaceous sedimentary rocks of Lingshan Island and implications for tectonic evolution of eastern Shandong, North China (in Chinese with English abstract). J Asian Earth Sci 96:27–45

    Google Scholar 

  • Wu T, Zhao S, Fu Y (2012) Petrogeochemistrical characteristics and its implication for hydrocarbon of the low Paleozoic marine siliclastic rocks in Baxiandun, Qingdao. Chin J Geol 45(4):1156–1169

    Google Scholar 

  • Xiao YK, Beary ES, Fassett JD (1988) An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 85:203–213

    Google Scholar 

  • Xiao Y, Yin D, Liu W, Wang Q, Wei H (2001) Boron isotope method for study of seawater intrusion. Sci China (series E) 44:62–71

    Google Scholar 

  • Yin P, Lin L, Chen B, Xiao G, Cao K, Yang J, Li M, Duan X, Qiu J, Hu Y, Wang L, Sun X (2017) Coastal zone geo-resources and geo-environment in China (in Chinese with English abstract). Geol China 44(5):842–856

    Google Scholar 

  • Yuan J (2013) Hydrogeochemistry of the geothermal Systems in Coastal Areas of Guangdong Province, South China. PhD Thesis, China University of Geosciences, China

    Google Scholar 

  • Yue H (2016) Sedimentary geochemistry of Laiyang Group in Late Mesozoic Rift Basin in the offshore of Shandong Province (in Chinese with English abstract). MSc Thesis, China University of Petroleum

  • Zhai S (2003) Structural characteristics and evolution in the Laiyang depression of the Jiaolai basin(in Chinese with English abstract). Petrol Geol Exp 25(2):137–142

    Google Scholar 

  • Zhang Z (1985) Two kinds of ground hot water in Wulong hot spring. Liaoning Geol 3:241–250

    Google Scholar 

  • Zhang Z (1999) Forecast of geological environment evolution and future living environment change trend since late Pleistocene in North China. Geological Publishing House, Beijing

  • Zhang S, Cheng L, Liu D (2001) Discovery of some Dasycladaceae fossils from Laiyang group in Jiaonan region. J Changchun Univ Sci Technol 31(3):210–212

    Google Scholar 

  • Zhang Y, Li J, Zhang T, Yuan J (2007) Late Mesozoic kinematic history of the Muping-Jimo fault zone in Jiaodong Peninsula, Shandong Province, East China. Geol Rev 53(3):289–300

    Google Scholar 

  • Zhang R, Liang X, Jin M, Wan L, Yu Q (2011) General hydrogeology (in Chinese). Geological Publishing House, Beijing, China

    Google Scholar 

  • Zhang HC, Lu HB, Li JG, Wang J, Chang SC, Dong XP, Zhang X, Huang ZC, Shu YC, Ren XM (2013) The Lingshandao formation: a new lithostratigraphic unit of the Lower Cretaceous in Qingdao, Shandong, China (in Chinese with English abstract). J Stratigr 37:196–202

    Google Scholar 

  • Zhang P, Kuang H, Liu Y, Meng Z, Peng N, Huan Xu H (2019) Sedimentary characteristics and provenance of the basal conglomerate of the Late Jurassic-Early Cretaceous Jiaolai Basin, eastern China and their implications for the uplift of the Sulu Orogenic Belt. Int Geol Rev 61(5):521–538. https://doi.org/10.1080/00206814.2018.1437786

    Article  Google Scholar 

  • Zhou Y, Ji Y, Zhang S, Wan L (2016) Controls on reservoir quality of Lower Cretaceous tight sandstones in the Laiyang Sag, Jiaolai Basin, eastern China: integrated sedimentologic, diagenetic and microfracturing data. Mar Pet Geol 76:26–50

    Google Scholar 

  • Zhu X, Ren T, Yang S, Hou J (2012) Characteristics of volcanic rocks and its internal sandstone of Bamudi formation in the Jimo area of Qingdao City (in Chinese with English abstract). Land Resour Shandong Province 28(10):21–24

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Yunqi Ma from the Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, for analyses of boron isotopes. Constructive comments by two reviewers, Christopher Eastoe and Rahim Bagheri, as well as the efforts of the editor Jean-Michel Lemieux and associate editor Philipp Weis, are gratefully appreciated. The authors have no conflicts of interest to declare.

Funding

This study was financially supported by the National Natural Science Foundation of China (NSFC Grant 41877209) and the Jimo Thermal Power Plant Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghe Pang.

Electronic supplementary material

ESM 1

(PDF 514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Pang, Z., Kong, Y. et al. Chemical and isotopic constraints on the origin of saline waters from a hot spring in the eastern coastal area of China. Hydrogeol J 28, 2457–2475 (2020). https://doi.org/10.1007/s10040-020-02199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02199-7

Keywords

Navigation