Skip to main content
Log in

Changes to inter-aquifer exchange resulting from long-term pumping: implications for bedrock groundwater recharge

Modifications apportées aux échanges entre aquifères résultant du pompage longue durée: répercussions sur la recharge des eaux souterraines du substratum rocheux

Cambios en el intercambio entre acuíferos como resultado del bombeo a largo plazo: implicancias para la recarga de las aguas subterráneas en basamento

长期开采导致的含水层间交换量变化:对基岩地下水补给的影响

Alterações nas trocas interaquíferas resultantes de bombeamento a longo prazo: implicações para a recarga de águas subterrâneas em leito de rocha

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Extensive pumping of aquifer systems alters the water budget components for individual aquifer units. This study evaluated long-term changes in alluvial-bedrock groundwater exchange within a highly pumped region of the Denver Basin Aquifer System, Colorado (USA). For a data set spanning five decades, bedrock-aquifer water levels were compared to the elevation of mapped stream alluvium in three-dimensional space, providing a description of spatiotemporal changes in the relationship between the alluvial and bedrock aquifers. Results clearly show increased downward hydraulic gradients (from the alluvial aquifer to underlying sedimentary bedrock); thus, recharge to the bedrock aquifer has increased over time. Variably saturated flow modeling was performed to investigate the dependence of recharge on the bedrock aquifer’s water-table position. Model simulations with realistic geologic heterogeneity demonstrate the potential for unsaturated conditions within the bedrock aquifer, which may eventually produce a hydraulic disconnection between the alluvial and bedrock aquifers, limiting further pumping-induced changes in recharge. These results have important implications for understanding and forecasting long-term water-budget changes in aquifer systems subjected to high pumping stress, especially those in semi-arid regions.

Résumé

Le pompage intensif des systèmes aquifères modifie les composantes du bilan hydrique des unités aquifères individuelles. Cette étude a évalué les modifications sur le long terme des échanges des eaux souterraines entre les alluvions et le substratum rocheux dans une région fortement exploitée par pompage du système aquifère du bassin de Denver, Colorado (États-Unis d’Amérique). Pour un ensemble de données couvrant cinq décennies, les niveaux d'eau du substratum rocheux-aquifère ont été comparés à l'élévation des alluvions fluviales cartographiées dans un espace tridimensionnel, fournissant une description des modifications spatio-temporelles dans la relation entre les aquifères alluviaux et du substratum rocheux. Les résultats montrent clairement une augmentation des gradients hydrauliques à l’aval (de l'aquifère alluvial au substrat rocheux sédimentaire sous-jacent); ainsi, la recharge de l'aquifère rocheux a augmenté au fil du temps. Une modélisation du débit à saturation variable a été réalisée pour étudier la dépendance de la recharge par rapport à la position de la nappe phréatique de l'aquifère rocheux. Les simulations de modèle avec une hétérogénéité géologique réaliste mettent en évidence les possibles conditions de zone non saturée au sein de l'aquifère du substratum rocheux, ce qui pourrait éventuellement produire une déconnexion hydraulique entre les aquifères alluviaux et du substratum rocheux, limitant les modifications de recharge induites par le pompage. Ces résultats ont d’importantes répercussions sur la compréhension et la prévision à des modifications à long terme du bilan hydrique dans les systèmes aquifères soumis à une pression de pompage élevé, en particulier ceux des régions semi-arides.

Resumen

El bombeo extensivo de los sistemas acuíferos altera los componentes del balance hídrico de las unidades acuíferas individuales. Este estudio evaluó los cambios a largo plazo en el intercambio de aguas subterráneas en los sedimentos aluviales y basamento en una región altamente bombeada del Sistema Acuífero de la Cuenca de Denver, Colorado (EEUU). Para un conjunto de datos que abarcaba cinco decenios, se compararon los niveles de agua del acuífero del basamento y del acuífero aluvial con la elevación de los cursos cartografiados en un espacio tridimensional, lo que proporcionó una descripción de los cambios espacio-temporales en la relación entre los acuíferos aluviales y el basamento. Los resultados muestran claramente el aumento de los gradientes hidráulicos aguas abajo (desde el acuífero aluvial hasta el basamento de roca sedimentaria subyacente); de esta forma, la recarga del acuífero del basamento ha aumentado con el tiempo. Se realizó una modelización del flujo saturado de forma variable para investigar la dependencia de la recarga con respecto a la posición del acuífero sobre el basamento. Las simulaciones de modelos con heterogeneidad geológica realista demuestran el potencial de condiciones no saturadas dentro del acuífero del basamento, que pueden llegar a producir una desconexión hidráulica entre los acuíferos aluviales y el acuífero del basamento, limitando así los cambios en la recarga inducidos por el bombeo. Estos resultados tienen importantes repercusiones para comprender y prever los cambios en el balance hídrico a largo plazo en los sistemas acuíferos sometidos a una alta presión de bombeo, especialmente los de las regiones semiáridas.

摘要

含水层系统的大量开采改变了单个含水单元的水量均衡组成。本研究评估了美国科罗拉多州丹佛盆地含水层系统的强开采区冲积层-基岩之间地下水交换量的长期变化。对于跨越五十年的数据集,将基岩-含水层之间的水位与三维空间中相关河流冲积层的高程进行了比较,描述了冲积层与基岩含水层之间关系的时空变化。结果清楚地显示出向下的水力梯度增加(从冲积含水层到下伏的沉积基岩);因此,向基岩含水层的补给量随时间增加了。开展了变饱和流的模拟来研究补给量对基岩含水层地下水位的依赖性。基于实际地质异质性的模型模拟表明,基岩含水层内存在非饱和条件的可能性,这最终可能造成冲积层和基岩含水层之间产生水力分离,从而限制了开采引起补给量的继续变化。这些结果对理解和预测高度开采压力地区含水层系统的长期水均衡变化具有重要意义,特别是在半干旱地区。

Resumo

O bombeamento extensivo de sistemas aquíferos altera os componentes do balanço hídrico para unidades individuais. Este estudo avaliou mudanças de longo prazo na troca de águas subterrâneas de um leito aluvial em uma região de alto bombeamento do Sistema Aquífero da Bacia de Denver, Colorado (EUA). Para o conjunto de dados que abrange cinco décadas, os níveis de água dos aquíferos de leitos rochosos foram comparados com a elevação do aluvião mapeado em um espaço tridimensional, fornecendo uma descrição das mudanças espaço-temporais na relação entre os aquíferos aluviais e de leito de rocha. Os resultados mostram claramente o aumento dos gradientes hidráulicos para baixo (do aquífero aluvial para a base rochosa subjacente); assim, a recarga para o aquífero de leito rochoso aumentou com o tempo. A modelagem do fluxo variável-saturado foi realizada para investigar a dependência da recarga na posição do lençol freático do aquífero fraturado. Simulações de modelos com heterogeneidade geológica realista demonstram o potencial para condições insaturadas no aquífero fraturado, o que pode eventualmente causar uma desconexão hidráulica entre os aquíferos aluvial e de leito rochoso, limitando outras alterações na recarga induzidas por bombeamento. Esses resultados têm implicações importantes para a compreensão e previsão de mudanças no balanço hídrico a longo prazo em sistemas aquíferos sujeitos a alto estresse por bombeamento, especialmente naquelas regiões semiáridas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nature Geosci 5(12):853–861

    Article  Google Scholar 

  • Banks EW, Simmons CT, Love AJ, Shand P (2011) Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: implications for regional scale water quantity and quality. J Hydrol 404:30–49

    Article  Google Scholar 

  • Barkmann PE (2004) Vertical hydraulic conductivity measurements in the Denver Basin. Colorado Mountain Geologist 41:169–183

    Google Scholar 

  • Barkmann PE, Fitzgerald FS, Sebol LA, Curtiss W, Pike J, Moore A, Taylor B (2015) Geology and groundwater resources of Douglas County, Colorado. Colorado Geol Surv Open File Rep 15–10. https://coloradogeologicalsurvey.org/publications/geology-groundwater-resources-douglascolorado. Accessed 1 March 2018

  • Barlow PM, Leake SA (2012) Streamflow depletion by wells: understanding and managing the effects of groundwater pumping on streamflow. US Geol Surv Circ 1376, 84 p. https://pubs.usgs.gov/circ/1376/. Accessed 11 July 2019

  • Bredehoeft JD (2002) The water budget myth revisited: Why hydrogeologists model. Groundwater 40:340–345

    Article  Google Scholar 

  • Bredehoeft J, Durbin T (2009) Ground water development: the time to full capture problem. Groundwater 47:506–514

    Article  Google Scholar 

  • Brunner P, Cook PG, Simmons CT (2009) Hydrogeologic controls on disconnection between surface water and groundwater. Water Resour Res 45:W01422

    Article  Google Scholar 

  • Brunner P, Cook PG, Simmons CT (2011) Disconnected surface water and groundwater: from theory to practice. Groundwater 49:460–467

    Article  Google Scholar 

  • Butler JJ Jr, Stotler RL, Whittemore DO, Reboulet EC (2013) Interpretation of water level changes in the High Plains aquifer in western Kansas. Groundwater 51:180–190

    Google Scholar 

  • Carlier C, Wirth SB, Cochand F, Hunkeler D, Brunner P (2018) Geology controls streamflow dynamics. J Hydrol 424:756–769

    Article  Google Scholar 

  • Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769

    Article  Google Scholar 

  • Colorado Department of Local Affairs (CDOLA) (2019) Historical census data: municipalities and counties. https://demography.dola.colorado.gov/population/data/historical_census/. Accessed 18 June 2019

  • Colorado Department of Natural Resources (CDNR) (2018) DWR water level database. https://dwr.state.co.us/Tools/GroundWater/WaterLevels. Accessed 1 March 2018

  • Colorado Department of Natural Resources (CDNR) (2019a) DWR water level database. https://dwr.state.co.us/Tools/GroundWater/Well/110. Accessed December 2019

  • Colorado Department of Natural Resources (CDNR) (2019b) DWR water level database. https://dwr.state.co.us/Tools/GroundWater/Well/111. Accessed December 2019

  • Colorado Water Conservation Board (CWCB) (2017) South Platte Decision Support System, Division 1 GIS Data, South Platte alluvial data geodatabase. https://www.colorado.gov/pacific/cdss/division-1-south-platte. Accessed 5 December 2017

  • Condon LE, Maxwell RM (2019) Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci Adv 5(6):eaav4574

    Article  Google Scholar 

  • Farnham TM, Kraus MJ (2002) The stratigraphic and climatic significance of Paleogene alluvial paleosols in synorogenic strata of the Denver Basin, Colorado. Rocky Mountain Geol 37(2):201–213

    Article  Google Scholar 

  • Fox GA, Durnford DS (2003) Unsaturated hyporheic zone flow in stream/aquifer conjunctive systems. Adv Water Resour 26:989–1000

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000: The U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00-92. https://doi.org/10.3133/ofr200092

  • Huang Y, Scanlon BR, Nicot JP, Reedy RC, Dutton AR, Kelley VA, Deeds NE (2012) Sources of groundwater pumpage in a layered aquifer system in the Upper Gulf Coastal Plain, USA. Hydrogeol J 20:783–796

    Article  Google Scholar 

  • Hutchison WR, Hibbs BJ (2008) Ground water budget analysis and cross-formational leakage in an arid basin. Groundwater 46:384–395

    Article  Google Scholar 

  • HydroGeoLogic (2011) MODFLOW-SURFACT v. 4.0: documentation of groundwater flow modules. HydroGeoLogic, Reston, VA

    Google Scholar 

  • Irvine DJ, Brunner P, Franssen HJH, Simmons CT (2012) Heterogeneous or homogeneous? Implications of simplifying heterogeneous streambeds in models of losing streams. J Hydrol 424:16–23

    Article  Google Scholar 

  • Konikow LF (2015) Long-term groundwater depletion in the United States. Groundwater 53:2–9

    Article  Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13:317–320

    Article  Google Scholar 

  • Konikow LF, Leake SA (2014) Depletion and capture: revisiting “The Source of Water Derived from Wells”. Groundwater 52:100–111

    Article  Google Scholar 

  • Lapey LA (2001) Hydrogeologic parameters of the Kiowa Research Core, Kiowa. MSc Thesis, Colorado State University, Fort Collins, CO

    Google Scholar 

  • Lohman SW (1988) Definitions of selected ground-water terms: revisions and conceptual refinements. US Geol Surv Water Suppl Pap 1988. https://doi.org/10.3133/wsp1988

  • Mukherjee A, Bhanja SN, Wada Y (2018) Groundwater depletion causing reduction of baseflow triggering Ganges River summer drying. Scientific Rep 8:12049

    Article  Google Scholar 

  • Niswonger RG, Fogg GE (2008) Influence of perched groundwater on base flow. Water Resour Res 44:W03405

    Google Scholar 

  • Panday S, Huyakorn PS (2008) MODFLOW SURFACT: a state-of-the-art use of vadose zone flow and transport equations and numerical techniques for environmental evaluations. Vadose Zone J 7(2):610–631

    Article  Google Scholar 

  • Parajuli K, Sadeghi M, Jones SB (2017) A binary mixing model for characterizing stony-soil water retention. Agric For Meteorol 244:1–8

    Article  Google Scholar 

  • Paschke SS (ed) (2011) Groundwater availability of the Denver Basin Aquifer System, Colorado. US Geol Surv Prof Pap 1770, 274 pp. https://doi.org/10.3133/pp1770

  • Priestley SC, Wohling DL, Keppel MN, Post VEA, Love AJ, Shand P, Tyroller L, Kipfer R (2017) Detecting inter-aquifer leakage in areas with limited data using hydraulics and multiple environmental tracers, including 4He, 36Cl/Cl, 14C, and 87Sr/86Sr. Hydrogeol J 25:2031–2047

    Article  Google Scholar 

  • Raynolds RG (2002) Upper Cretaceous and Tertiary stratigraphy of the Denver Basin, Colorado. Rocky Mountain Geol 37(2):111–134

    Article  Google Scholar 

  • Robson SG (1987) Bedrock aquifers in the Denver basin, Colorado: a quantitative water-resources appraisal. U.S. Geological Survey Open-File Report 84-431. https://doi.org/10.3133/ofr84431

  • Robson SG, Romero JC (1981) Geologic structure, hydrology, and water quality of the Dawson aquifer in the Denver basin, Colorado. US Geol Surv Hydrologic Invest Atlas HA-643. https://doi.org/10.3133/ha643

  • Ronayne MJ, Roudebush JA, Stednick JD (2017) Analysis of managed aquifer recharge for retiming streamflow in an alluvial river. J Hydrol 544:373–382

    Article  Google Scholar 

  • Ruybal CJ, Hogue TS, McCray JE (2019) Assessment of groundwater depletion and implications for management in the Denver Basin Aquifer System. J Am Water Resour Assoc 55:1130–1148. https://doi.org/10.1111/1752-1688.12755

    Article  Google Scholar 

  • Sanford W (2002) Recharge and groundwater models: an overview. Hydrogeol J 10:110–120

    Article  Google Scholar 

  • Schilling OS, Irvine DJ, Franssen HJH, Brunner P (2017) Estimating the spatial extent of unsaturated zones in heterogeneous river–aquifer systems. Water Resour Res 53:10583–10602

    Article  Google Scholar 

  • Serra K, Reynolds AC, Raghavan R (1983) New pressure transient analysis-methods for naturally fractured reservoirs. J Petrol Tech 35:2271–2283. https://doi.org/10.2118/10780-PA

    Article  Google Scholar 

  • Shipton ZK, Evans JP, Robeson KR, Forster CB, Snelgrove S (2002) Structural heterogeneity and permeability in faulted eolian sandstone: implications for subsurface modeling of faults. AAPG Bull 86:863–883

    Google Scholar 

  • Tang Q, Kurtz W, Schilling OS, Brunner P, Vereecken H, Franssen HJH (2017) The influence of riverbed heterogeneity patterns on river–aquifer exchange fluxes under different connection regimes. J Hydrol 554:383–396

    Article  Google Scholar 

  • USGS (2018) National Water Information System (USGS water data for the nation). http://waterdata.usgs.gov/nwis. Accessed 1 March 2018

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402

    Article  Google Scholar 

  • Winter TC (2001) The concept of hydrologic landscapes. J Am Water Resour Assoc 37:335–349

    Article  Google Scholar 

  • Zipper SC, Gleeson T, Kerr B, Howard JK, Rohde MM, Carah J, Zimmerman J (2019) Rapid and accurate estimates of streamflow depletion caused by groundwater pumping using analytical depletion functions. Water Resour Res 55:5807–5829

    Article  Google Scholar 

Download references

Acknowledgements

Any conclusions or recommendations expressed in this work are solely the responsibility of the authors. We thank Profs. Tom Sale and William Sanford for valuable discussions. Comments from three reviewers and the associate editor helped to improve this article.

Funding

Support for this research was provided by the Colorado Water Center and the Town of Castle Rock, Colorado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Ronayne.

Electronic supplementary material

ESM 1

(PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cognac, K.E., Ronayne, M.J. Changes to inter-aquifer exchange resulting from long-term pumping: implications for bedrock groundwater recharge. Hydrogeol J 28, 1359–1370 (2020). https://doi.org/10.1007/s10040-020-02141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02141-x

Keywords

Navigation