Skip to main content

Advertisement

Log in

Field investigation of potential terrestrial groundwater-dependent ecosystems within Australia’s Great Artesian Basin

Investigations de terrain sur des écosystèmes terrestres présumés inféodés aux eaux souterraines dans le Grand Bassin Artésien d’Australie

Investigación de campo de potenciales ecosistemas terrestres dependientes de aguas subterráneas dentro de la Great Artesian Basin

澳大利亚大自流盆地潜在的依赖地下水的陆地生态系统的野外调查

Investigação de campo de possíveis ecossistemas terrestres dependentes de águas subterrâneas na Grande Bacia Artesiana da Austrália

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Quantitative field methods were used to refine eco-hydrogeological conceptual models of terrestrial groundwater dependent ecosystems (GDEs) in the Great Artesian Basin (GAB), Queensland, Australia. There are few studies which report on the effectiveness of published methods to ground truth the occurrence of assumed GDEs, particularly in areas subject to coal seam gas development. Using a combination of methods, a field investigation was completed at four sites in vegetation communities dominated by river red gum (Eucalyptus camaldulensis) in areas overlying the GAB. Multiple lines of evidence determined the predominant source of water utilised by large trees at each locality to assess if the terrestrial ecosystems were dependent on the presence of groundwater. Methods included soil coring to observe tree rooting depth and underlying hydrogeological conditions, matching of soil moisture with leaf water potential, and analysis of naturally occurring stable isotopes of hydrogen and oxygen found in tree xylem, soil moisture and groundwater. Results indicate that despite study locations being conceptually mapped as GDEs, trees located within at least three of the four assessed sites were predominantly utilising shallow sources of soil moisture located above the regional water-table aquifer. Also, rooting depths of targeted tree species were consistently much shallower (maximum depth 7.6 mbgl) than what is commonly reported in literature (12–22.6 mbgl). The findings highlight the importance of ground-truthing to refine the eco-hydrogeological conceptual models of GDEs using a combination of methods to create a holistic understanding of water sources for terrestrial vegetation communities in areas vulnerable to groundwater abstraction.

Résumé

Des méthodes quantitatives de terrain ont été utilisées pour ajuster le modèle hydrogéologique conceptuel des écosystèmes terrestres inféodés aux eaux souterraines (ETIEs) dans le Grand Bassin Artésien (GBA) du Queensland, Australie. Peu d’études font état de l’efficacité des méthodes publiées visant à vérifier sur le terrain l’existence d’écosystèmes terrestres présumés IEs, en particulier dans les zones confrontées à la mise en exploitation du gaz de houille. En recourant à des méthodes combinées, des investigations de terrain ont été menées sur quatre sites, au sein de groupements végétaux dominés par le gommier rouge des rivières (Eucalyptus camaldulensis), dans des zones qui s’étendent à travers le GBA. Des éléments de preuve multiples ont déterminé la ressource en eau principalement utilisée par les arbres de grande taille de chaque localisation, de manière à évaluer si les écosystèmes terrestres sont inféodés à la présence d’eaux souterraines. Les méthodes comprenaient le carottage du sol en vue d’observer la profondeur des racines de l’arbre et les conditions hydrogéologiques sous-jacentes, la concordance de l’humidité du sol avec le potentiel en eau des feuilles, et l’analyse des isotopes stables de l’hydrogène et de l’oxygène naturellement présents dans le xylème de l’arbre, l’humidité du sol et les eaux souterraines. Les résultats montrent que, bien que les localisations étudiées soient cartographiées comme IEs, les arbres situés dans au moins trois des quatre sites évalués utilisaient de manière prédominante les ressources superficielles d’humidité du sol localisées au-dessus de la surface piézométrique de l’aquifère régional. Ainsi, la profondeur d’enracinement des espèces d’arbre ciblés était immanquablement beaucoup moins importante—profondeur maximale de 7.6 m sous le niveau du sol (sns)—que ce qui est. rapporté communément dans la littérature (12–22.6 msns). Les résultats soulignent l’importance de la vérification de terrain pour affiner les modèles conceptuels éco-hydrogéologiques des ETIEs, grâce à une combinaison de méthodes qui permet une compréhension holistique des ressources en eau pour les populations végétales terrestres, dans les zones exposées à une exploitation d’eau souterraine.

Resumen

Se utilizaron métodos cuantitativos de campo para mejorar los modelos conceptuales eco-hidrogeológicos de los ecosistemas terrestres dependientes de las aguas subterráneas (GDEs) en la Great Artesian Basin (GAB), Queensland, Australia. Existen pocos estudios que informen sobre la eficacia de los métodos publicados para fundamentar la verdad sobre la ocurrencia de los GDEs, particularmente en áreas sujetas al desarrollo del gas de la veta de carbón. Utilizando una combinación de métodos, se completó una investigación de campo en cuatro sitios en comunidades de vegetación dominadas por eucaliptos rojos (Eucalyptus camaldulensis) en áreas que dominan el GAB. Múltiples líneas de evidencia determinaron la fuente predominante de agua utilizada por los grandes árboles en cada localidad para evaluar si los ecosistemas terrestres dependían de la presencia de agua subterránea. Los métodos incluían la extracción de testigos del suelo para observar la profundidad de las raíces de los árboles y las condiciones hidrogeológicas subyacentes, la comparación de la humedad del suelo con el potencial de agua de las hojas y el análisis de los isótopos estables naturales de hidrógeno y oxígeno que se encuentran en el xilema de los árboles, la humedad del suelo y el agua subterránea. Los resultados indican que, a pesar de que las ubicaciones del estudio se han cartografiado conceptualmente como GDEs, los árboles ubicados en al menos tres de los cuatro sitios evaluados utilizaban predominantemente fuentes poco profundas de humedad del suelo situadas por encima del acuífero freático regional. Además, las profundidades de enraizamiento de las especies de árboles objetivo fueron consistentemente mucho más bajas (profundidad máxima 7.6 mbnt) que lo que se reporta comúnmente en la literatura (12–22.6 mbnt). Los resultados ponen de relieve la importancia de la comprobación de campo para mejorar los modelos eco-hidrogeológicos conceptuales de los GDEs utilizando una combinación de métodos para crear una comprensión holística de las fuentes de agua para las comunidades de vegetación terrestre en áreas vulnerables a la extracción de agua subterránea.

摘要

在澳大利亚昆士兰州的大自流盆地,采用定量化的野外方法对依赖地下水的陆地生态系统的生态水文地质概念模型进行了改进。对已出版方法的有效性来确定假设依赖地下水的生态系统是否存在的研究不多见,特别是在受煤层气开发影响的地区。在大自流盆地上覆区域,运用多种方法,完成了以河红树胶(Eucalyptus camaldulensis)为主的植被群落的四个样点的野外调查。多方面的证据确定了每个地方的树木依赖的主要水源,以此来评估陆地生态系统是否依赖于地下水作为主要水源。采用的方法包括:土壤取芯以观测树木生根深度及下伏水文地质条件;土壤水分与叶水势的匹配;树木木质部,土壤水分和地下水中天然存在的稳定氢氧同位素分析。结果表明,尽管研究地点在概念上被描述为依赖地下水的生态系统,但四个评估地点中至少有三个地点内的树木主要利用位于区域地下含水层上方的浅层土壤水分作为水分来源。而且,目标树种的生根深度始终比通常文献中报道的(12–22.6 mbgl)浅得多(最大深度为7.6 mbgl)。研究结果强调了现场验证的重要性,即利用各种方法的组合来完善依赖地下水型生态系统的生态水文地质概念模型,从而为易受地下水开采影响地区的陆生植被群落建立对水源的整体认识。

Resumo

Métodos quantitativos de campo foram utilizados para refinar modelos conceituas ecohidrogeológicos de ecossistemas terrestres dependentes de aguas subterrâneas (EDAS) na Grande Bacia Artesiana (GBA), Queensland, Austrália. Existem poucos estudos que relatam a eficiência de métodos publicados para fundamentar a verdade sobre a ocorrência de EDAS assumidos, particularmente em áreas sujeitas ao desenvolvimento de gás de carvão mineral. Usando uma combinação de métodos, uma investigação de campo foi concluída em quatro locais em comunidades de vegetação dominadas por eucalipto (Eucalyptus camaldulensis) em áreas sobrepostas ao GBA. Várias linhas de evidencia determinaram a fonte predominante de água utilizada por grandes árvores em cada localidade para avaliar se os ecossistemas terrestres eram dependentes da presença de águas subterrâneas. Os métodos incluíram a amostragem de solo para observar a profundidade do enraizamento das árvores e as condições hidrogeológicas subjacentes, correspondência da umidade do solo com o potencial de água nas folhas e análise de isótopos estáveis de oxigênio e hidrogênio de ocorrência natural, encontrados no xilema da árvore, umidade do solo e na água subterrânea. Os resultados indicam que apesar de os locais de estudo serem conceitualmente mapeados como EDAS, as árvores localizadas em pelo menos três dos quatro locais avaliados utilizavam predominantemente fontes rasas de umidade do solo localizadas acima do lençol freático do aquífero regional. Além disso, as profundidades de enraizamento das espécies de árvore alvo eram consistentemente muito mais rasas (profundidade máxima de 7.6 m) do que é comumente reportado na literatura (12–22.6 m). As descobertas destacam a importância de verdades terrestres para refinar os modelos conceituais ecohidrogeológicos dos EDAS usando uma combinação de métodos para criar uma compreensão holística das fontes de água para comunidades de vegetação terrestre em áreas vulneráveis à captação de águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Arrow (Arrow Energy) (2018) Surat Groundwater Dependent Ecosystems Connectivity Study. Arrow Energy, Brisbane

  • Australasian Groundwater and Environmental Consultants Pty Ltd (AGE) (2005) Potential river baseflow from aquifers of the Great Artesian Basin. Report prepared for the Department of Natural Resources and Mines, AGE, Newcastle, Australia

  • Australian Government Department of the Environment, Heritage and the Arts (DEHA) (2010) A Directory of Important Wetlands in Australia, online database, viewed 2010

  • Australian National Botanic Gardens (ANBG) (2004) Water for a healthy country: taxon attribute profile, Eucalyptus camaldulensis. https://www.anbg.gov.au/cpbr/WfHC/Eucalyptus-camaldulensis/index.html. Accessed 17 September 2019

  • Barron OV, Emelyanova I, van Niel TG, Pollock D, Hodgson G (2014) Mapping groundwater dependent ecosystems using remote sensing measures of vegetation and moisture dynamics. Hydrol Process 28:372–385

    Article  Google Scholar 

  • Bureau of Meteorology (2017) Groundwater dependent ecosystems atlas. Australian Government, Canberra

    Google Scholar 

  • Bureau of Meteorology (BoM) (2019a) Australian Government. www.bom.gov.au/climate/data/. Accessed 4 October 2019

  • Bureau of Meteorology (BoM) (2019b) Special Climate Statement 70: drought conditions in eastern Australia and impact on water resources in the Murray-Darling Basin. Australian Government, Canberra

  • Bureau of Meteorology (BoM) (2019c) Australian Government. http://www.bom.gov.au/metadata/catalogue/view/ANZCW0503900358.shtml. Accessed 4 October 2019

  • Commonwealth of Australia (2015) Modelling water-related ecological responses to coal seam gas extraction and coal mining. Prepared by Auricht projects and CSIRO for the Department of the Environment, Commonwealth of Australia, Canberra

  • Cunningham SC, Read J, Baker PJ, Mac Nally R (2007) Quantitative assessment of stand condition and its relationship to physiological stress in stands of Eucalyptus camaldulensis Myrtaceae. Aust J Bot 55:692–699

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702−1703

  • Department of Environment and Heritage Protection (DEHP) (2012) Wetland buffer case study: Lake Broadwater. Queensland Wetlands Program, Queensland Government, Brisbane, 54 pp

    Google Scholar 

  • Department of Environment and Science (2017) Groundwater dependent ecosystems and potential aquifer mapping: Queensland. Queensland Government. Digital dataset available at: https://wetlandinfo.ehp.qld.gov.au/wetlands/ecology/aquatic-ecosystems-natural/groundwater-dependent/. Accessed 13 July 2019

  • Department of Natural Resources, Mines and Energy (DNRME) (2013) Review of Water Resource (Paroo, Buloo and Nebine) Plan 2003. DNRME, Brisbane

  • Department of Natural Resources and Mines, Office of Groundwater Impact Assessment (DNRME) (2016) Underground water impact report for the Surat cumulative management area 2016. Queensland Government, Brisbane

    Google Scholar 

  • Department of Natural Resources, Mines and Energy (DNRME) (2018a) Coal seam gas units 2017: northern Surat and Clarence Moreton basins. Queensland Government, Brisbane

    Google Scholar 

  • Department of Natural Resources, Mines and Energy (DNRME) (2018b) Detailed surface geology Queensland 2018. Queensland Government, Brisbane

    Google Scholar 

  • Department of Science, Information Technology and Innovation (2015) Queensland Groundwater dependent ecosystem mapping method: a method for providing baseline mapping of groundwater dependent ecosystems in Queensland. Department of Science, Information Technology and Innovation, Brisbane

  • Doody TM, Hancock PJ, Pritchard JL (2018) Assessing groundwater-dependent ecosystems: IESC Information Guidelines Explanatory Note. A report prepared for the Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development through the Department of the Environment and Energy, Canberra

  • Doody T, Colloff M, Davies M, Koul V, Benyon R, Nagler P (2015) Quantifying water requirements of riparian river red gum (Eucalyptus camaldulensis) in the Murray-Darling basin, Australia: implications for the management of environmental flows. Ecohydrology 8:1471–1487

    Article  Google Scholar 

  • Dupuy L, Fourcaud T, Stokes A (2005) A numerical investigation into the influence of soil type and root architecture on tree anchorage. Plant Soil 278(1):119–134

    Article  Google Scholar 

  • Eamus D (2009) Identifying groundwater dependent ecosystems: a guide for land and water managers. University of Technology, Sydney

    Google Scholar 

  • Eamus D, Froend R, Loomes R, Hose G, Murray B (2006a) A functional methodology for determining the groundwater regime needed to maintain the health of ground water dependent vegetation. Aust J Bot 54(2):97–114

    Article  Google Scholar 

  • Eamus D, Hatton T, Cook P, Colvin C (2006b) Ecohydrology. CSIRO Publishing, Collingwood, Australia

    Book  Google Scholar 

  • Evaristo J, McDonnell J, Clemens J (2017) Plant source water apportionment using stable isotopes: a comparison of simple linear, two-compartment mixing model approaches. Hydrol Process 31(21):3750–3758

  • Eamus D, Zolfaghar S, Villalobos-Vega R, Cleverly J, Huete A (2015) Groundwater-dependent ecosystems: recent insights from satellite and field-based studies. Hydrol Earth Syst Sci 19:4229–4256. https://doi.org/10.5194/hess-19-4229-2015

    Article  Google Scholar 

  • Feikema P, Morris J, Connell L (2010) The water balance and water sources of a Eucalyptus plantation over shallow saline groundwater. Plant Soil 332(1):429–449

    Article  Google Scholar 

  • Fensham R, Fairfax R (2004) Spring wetlands of the Great Artesian Basin, Queensland, Australia. Wetl Ecol Manag 11(5):343–362

    Article  Google Scholar 

  • Fensham R, Fairfax RJRJ, Pocknee DD, Kelley JJ (2004) Vegetation patterns in permanent spring wetlands in arid Australia. Aust J Bot 52(6):719–728

    Article  Google Scholar 

  • Froend R, Sommer B (2010) Phreatophytic vegetation response to climatic and abstraction-induced groundwater drawdown: examples of long-term spatial and temporal variability in community response. Ecol Eng 36(9):1191–1200

    Article  Google Scholar 

  • Fourcaud T, Ji J, Zhang Z, Stokes A (2008) Understanding the impact of root morphology on overturning mechanisms: a modelling approach. Ann Bot 101(8):1267–1280

    Article  Google Scholar 

  • Gou S, Gonzales S, Miller G (2015) Mapping potential groundwater-dependent ecosystems for sustainable management. Ground Water 53(1):99–110

    Article  Google Scholar 

  • Gow L, Barret D, Renzullo L, Phinn S, Grady A (2016) Characterising groundwater use by vegetation using a surface energy balance model and satellite observations of land surface temperature. Environ Model Softw 80:66–82

    Article  Google Scholar 

  • Hatton T, Evans R (1998) Dependence of ecosystems on groundwater and its significance to Australia. LWRRDC occasional paper, Land and Water Resources Research and Development Corporation (LWRRDC), Canberra

  • Horner GJ, Baker PJ, Mac Nally R, Cunningham SC, Thomson JR, Hamilton F (2009) Mortality of developing floodplain forests subjected to a drying climate and water extraction. Glob Chang Biol 15:2176–2186

    Article  Google Scholar 

  • Huntington J, McGwire K, Morton C, Synder K, Peterson S, Erickson T, Niswonger R, Carroll R, Smith G, Allen R (2016) Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive. Remote Sens Environ 185:186–197

    Article  Google Scholar 

  • Hutchinson MF, Nix HA, McMahon JP (1992) Climate constraints on cropping systems. Field Crop Syst 18:37–58

    Google Scholar 

  • Jeanette H, Matt M (2010) Mapping groundwater dependent ecosystems in California. PLoS One 5(6):e11249

  • Kallarackal J, Somen CK (1998) Water relations and rooting depths of selected eucalypt species. Kerala Forest Research Institute, Peechi, Thrissure, India

    Google Scholar 

  • Kath J, Reardon-Smith K, Le Brocque A, Dyer F, others (2014) Groundwater decline and tree change in floodplain landscapes: identifying non-linear threshold responses in canopy condition. Global Ecol Conserv 2:148–160

    Article  Google Scholar 

  • Lamontagne S, Cook P, O’Grady A, Eamus D (2005) Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). J Hydrol 310(1):280–293

    Article  Google Scholar 

  • McKenzie N, Jacquier D, Isbell R, Brown K (2004) Australian soils and landscapes. CSIRO Publishing, Canberra

  • Mensforth LJ, Thorburn PJ, Tyerman SD, Walker GR (1994) Sources of water used by riparian Eucalyptus camaldulensis overlying highly saline groundwater. Oecologia 100:21–28

    Article  Google Scholar 

  • Meter Group Incorporated (2017) WPC-4 Dew Point Potentiameter: operators manual. Meter Group Inc., Pullman, WA

  • Moody T, Barron O, Dowsley K, Emelyanova I, Fawcett J, Overton I, Pritchard J, Van Dijk A, Warren G (2017) Continental mapping of groundwater dependent ecosystems: a methodological framework to integrate diverse data and expert opinion. J Hydrol: Reg Stud 10:61–81

    Google Scholar 

  • Office of Groundwater Impact Assessment (OGIA) (2017) Identification of gaining streams in the Surat cumulative management area: hydrogeological investigation report. Dept. of Natural Resources and Mines, Queensland Government, Brisbane

  • O’Grady AP, Eamus D, Cook PG, Lamontagne S (2005) Comparative water use by the riparian trees Melaleuca argentea and Corymbia bella in the wet–dry tropics of northern Australia. Tree Physiol 26:219–228

    Article  Google Scholar 

  • Orellana F, Verma P, LoheideII SP, Daly E (2012) Monitoring and modelling water-vegetation interactions in groundwater-dependent ecosystems. Rev Geophys 50:RG3003. https://doi.org/10.1029/2011RG000383

    Article  Google Scholar 

  • Pettit N, Froend RH (2018) How important is groundwater availability and stream perenniality to riparian and floodplain tree growth? Hydrol Process 32:1502–1514

    Article  Google Scholar 

  • Pinto CA, Nadezhdina N, David JS, Kurz-Besson C, Caldeira MC, Henriques MO, David TS (2014) Transpiration in Quercus suber trees under shallow water table conditions: the role of soil and groundwater. Hydrol Process 28:6067–6079

    Article  Google Scholar 

  • Powell O, Silcock J, Fensham R (2015) Oases to oblivion: the rapid demise of springs in the south-eastern Great Artesian Basin, Australia. Ground Water 53(1):171–178

    Article  Google Scholar 

  • Ransley TR, Radke BM, Feitz AJ, Kellett JR, Owens R, Bell J, Stewart G, Carey H (2015) Hydrogeological atlas of the Great Artesian Basin. Geoscience Australia, Canberra

    Book  Google Scholar 

  • Reardon-Smith K (2011) Disturbance and resilience in riparian woodlands on the highly modified Upper Condamine floodplain. PhD Thesis, University of Southern Queensland, Australia

  • Richardson et al (2011) Australian groundwater-dependent ecosystem toolbox part 1: assessment framework. Waterlines report, National Water Commission, Canberra

  • Singer MB, Sargeant CI, Peigay H, Riquier J, Wilson RJ, Evans CM (2014) Floodplain ecohydrology: climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees. Water Resour Res 50(5):4490–4513

  • Soil Moisture Equipment Corp (2006) Model 3115: portable plant water status console—operation manual. Soil Moisture Equipment Corp, Santa Barbara, CA

  • Stubbs CJ, Cook DD, Niklas KJ (2019) A general review of the biomechanics of root anchorage. J Exp Bot 70(14):3439–3451

  • Sundaram B, Feitz A, Caritat P, de Plazinska A, Brodie R, Coram J, Ransley T (2009) Groundwater sampling and analysis: a field guide. Record 2009/27, Geoscience Australia, Canberra, 95 pp

  • Thorburn PJ, Walker GR (1994) Variations in stream water uptake by Eucalyptus camaldulensis with differing access to stream water. Oecologia 100:293–301

    Article  Google Scholar 

  • Thorburn PJ, Mensforth LJ, Walker GR (1994) Reliance of creek-side river red gums on creek water. Aust J Mar Freshwat Res 45:1439–1443

    Article  Google Scholar 

  • Zolfaghar S (2013) Comparative ecophysiology of Eucalyptus Woodlands along a depth to groundwater gradient. PhD Thesis, University of Technology, Sydney, Australia

Download references

Acknowledgements

Contributions were provided by Hilary Stuart Williams (ANU Farquhar Laboratory) who assisted with contextualisation of stable isotope data. A thankyou is also extended to the peer reviewers of this paper whose critical comments greatly improved the utility of the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Jones.

Additional information

Published in the special issue “Advances in hydrogeologic understanding of Australia’s Great Artesian Basin”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, C., Stanton, D., Hamer, N. et al. Field investigation of potential terrestrial groundwater-dependent ecosystems within Australia’s Great Artesian Basin. Hydrogeol J 28, 237–261 (2020). https://doi.org/10.1007/s10040-019-02081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02081-1

Keywords

Navigation