Skip to main content

Advertisement

Log in

Water-table fluctuation method for assessing aquifer recharge: application to Canadian aquifers and comparison with other methods

Méthode des variations du niveau piézométrique pour évaluer la recharge d’un aquifère: application à des aquifères canadiens et comparaison avec d’autres méthodes

Método de la fluctuación de los niveles freáticos para evaluar la recarga de acuíferos: aplicación a los acuíferos canadienses y comparación con otros métodos

评价含水层补给量的地下水位波动方法:在加拿大含水层的应用及与其他方法的比较

Método da flutuação do nível freático para avaliar a recarga de aquíferos: aplicação em aquíferos canadenses e comparação com outros métodos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The water-table fluctuation (WTF) method is widely used to assess groundwater recharge but it is also criticized for certain limitations, namely that it is limited to calculating local recharge because most aquifers are relatively heterogeneous. This study aims at assessing groundwater recharge with the WTF method on a bigger spatial scale by comparing results from WTF with those obtained from different methods. The WTF method was thus applied to observation wells located in two aquifers in Eastern Canada for which groundwater recharge had previously been evaluated using several methods. Comparisons were conducted between WTF and other methods appropriate for regional assessments: (1) two water budget approaches, (2) hydrograph separation, and (3) an analytical regional solution based on Dupuit-Forchheimer assumptions. These showed that applying the WTF method to several observation wells and then calculating an average value can yield results that are comparable to those obtained on the scale of catchment areas. The study concludes that the WTF method can be used for the assessment of groundwater recharge at large regional scales if the aquifer is monitored by an appropriate network of observation wells.

Reésumé

La méthode des variations du niveau piézométrique (VNP) est largement utilisée pour évaluer la recharge des nappes d’eau souterraine mais elle est aussi critiquée en raison de certaines limites, notamment pour calculer la recharge locale, car la plupart des aquifères sont relativement hétérogènes. L’objectif de cette étude est d’évaluer la recharge des nappes d’eau souterraine avec la méthode VNP à une échelle plus importante en comparant les résultats de la méthode VNP à ceux obtenus à partir de différentes méthodes. La méthode VNP a ainsi été appliquée aux forages d’observation situés au droit de deux aquifères de l’Est canadien, pour lesquels la recharge de l’aquifère avait préalablement été évaluée en utilisant plusieurs méthodes. Des comparaisons ont été menées entre la méthode VNP et d’autres méthodes adaptées pour des évaluations régionales: (1) deux approches de bilan d’eau, (2) la séparation d’hydrogrammes, et (3) une solution régionale analytique basée sur les hypothèses de Dupuits-Forcheimer. Il a été mis en évidence que l’application de la méthode VNP à plusieurs forages d’observation et ensuite le calcul d’une valeur moyenne peut conduire à des résultats comparables à ceux obtenus à l’échelle de bassins versants. Cette étude conclut que la méthode VNP peut être utilisée pour l’évaluation de la recharge des nappes d’eau souterraine à des échelles régionales importantes, si l’aquifère dispose d’un réseau adéquat de forages d’observation.

Resumen

El método de fluctuación de los niveles freáticos (WTF) es ampliamente utilizado para evaluar la recarga de aguas subterráneas, pero también es criticado por ciertas limitaciones, a saber, que se limita a calcular la recarga local porque la mayoría de los acuíferos son relativamente heterogéneos. El objetivo de este estudio es evaluar la recarga de aguas subterráneas con el método WTF a una escala espacial mayor, comparando los resultados del WTF con los obtenidos con diferentes métodos. Por lo tanto, el método del WTF se aplicó a pozos de observación ubicados en dos acuíferos en el este de Canadá para los cuales se había evaluado previamente la recarga de agua subterránea utilizando varios métodos. Se realizaron comparaciones entre el WTF y otros métodos apropiados para las evaluaciones regionales: (1) dos enfoques de balances de agua, (2) separación de hidrogramas, y (3) una solución analítica regional basada en las suposiciones de Dupuit-Forchheimer. Éstas demostraron que la aplicación del método WTF a varios pozos de observación y el cálculo de un valor promedio pueden arrojar resultados comparables a los obtenidos en la escala de áreas de captación. El estudio concluye que el método WTF puede ser utilizado para la evaluación de la recarga de aguas subterráneas a escala regional si el acuífero es monitoreado por una red apropiada de pozos de observación.

摘要

地下水位波动(WTF)方法在地下水资源补给量评价中应用广泛,但由于大多数含水层存在相对非均质性,该方法仅限于计算局部地区补给量,因此该方法也受到一定的质疑。本研究的目的是在较大的空间尺度上利用WTF法评价地下水补给量,并将WTF法与其他不同方法的结果进行比较。以前曾用几种方法评价过加拿大东部两个含水层的地下水补给量,因此,将WTF法应用于这两个含水层的观测井中,比较了WTF法和其他3种适合区域评估的方法,包括:(1)两种水资源预算方法,(2)径流分割,(3)基于Dupuit-Forchheimer假定的区域解析解。结果表明,将WTF法应用于几个观测井,然后计算平均值,可以得到与流域研究区尺度相当的结果。研究发现,当含水层布设的观测井网络恰当时,WTF方法可用于评价大区域尺度的地下水资源补给量。

Resumo

O método da variação do nível freático (WTF) é amplamente utilizado para avaliar a recarga das águas subterrâneas, mas é criticado por certas limitações, a saber, que se limita ao cálculo da recarga local, porque a maioria dos aquíferos é relativamente heterogênea. Este estudo tem como objetivo avaliar a recarga de águas subterrâneas com o método WTF em uma escala espacial maior, comparando os resultados do WTF com os obtidos por diferentes métodos. O método WTF foi, portanto, aplicado a poços de observação localizados em dois aquíferos no Canadá Oriental para os quais a recarga de águas subterrâneas havia sido avaliada anteriormente usando vários métodos. Foram realizadas comparações entre o WTF e outros métodos apropriados para avaliações regionais: (1) duas abordagens de balanço hídrico, (2) separação de hidrógrafa, e (3) uma solução analítica regional baseada na premissa de Duipuit-Forchheimer. Estes mostraram que a aplicação do método WTF para vários poços de observação e, em seguida, o cálculo de um valor médio pode produzir resultados que são comparáveis aos obtidos na escala de bacia. O estudo conclui que o método WTF pode ser usado para a avaliação da recarga de águas subterrâneas em grandes escalas regionais se o aquífero for monitorado por uma rede apropriada de poços de observação.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ala-aho P, Rossi PM, Kløve B (2015) Estimation of temporal and spatial variations in groundwater recharge in unconfined sand aquifers using Scots pine inventories. Hydrol Earth Syst Sci 19:1961–1976. https://doi.org/10.5194/hess-19-1961-2015

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. New York: Dover Publications, Inc.

  • Bisson J, Roberge F (1983) Prévision des apports naturels: expérience d’Hydro-Québec [Predicting natural intakes: Hydro-Québec’s experience]. Paper presented at a workshop on flow predictions. Institute of Electrical and Electronics Engineers (IEEE), Toronto

  • Boumaiza L (2008) Caractérisation hydrogéologique des hydrofaciès dans le paléodelta de la rivière Valin au Saguenay [Hydrogeological characterization of hydrofacies in the Valin River Paleodelta in Saguenay]. MSc Thesis, Université du Québec à Chicoutimi, Canada

  • Budyko MI (1974) Climate and life, vol 18. Academic, San Diego

  • Chemingui A, Sulis M, Paniconi C (2015) An assessment of recharge estimates from stream and well data and from a coupled surface-water/groundwater model for the des Anglais catchment, Quebec (Canada). Hydrogeol J 23:1731–1743. https://doi.org/10.1007/s10040-015-1299-1

    Article  Google Scholar 

  • Carrera-Hernández JJ, Smerdon BD, Mendoza CA (2012) Estimating groundwater recharge through unsaturated flow modelling: sensitivity to boundary conditions and vertical discretization. J Hydrol 452-453:90–101. https://doi.org/10.1016/j.jhydrol.2012.05.039

    Article  Google Scholar 

  • Chesnaux R (2013) Regional recharge assessment in the crystalline bedrock aquifer of the Kenogami Uplands, Canada. Hydrol Sci J-J Sci Hydrol 58:421–436. https://doi.org/10.1080/02626667.2012.754100

    Article  Google Scholar 

  • Childs EC (1960) The nonsteady state of the water table in drained land. J Geophys Res 65:780–782. https://doi.org/10.1029/JZ065i002p00780

    Article  Google Scholar 

  • Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour Res 41:9. https://doi.org/10.1029/2004wr003077

    Article  Google Scholar 

  • Crosbie RS, Jolly ID, Leaney FW, Petheram C (2010) Can the dataset of field based recharge estimates in Australia be used to predict recharge in data-poor areas? Hydrol Earth Syst Sci 14:2023–2038. https://doi.org/10.5194/hess-14-2023-2010

    Article  Google Scholar 

  • Cuthbert MO (2010) An improved time series approach for estimating groundwater recharge from groundwater level fluctuations. Water Resour Res 46. https://doi.org/10.1029/2009wr008572

  • Delin GN, Healy RW, Lorenz DL, Nimmo JR (2007) Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA. J Hydrol 334:231–249. https://doi.org/10.1016/j.jhydrol.2006.10.010

    Article  Google Scholar 

  • Doble RC, Crosbie RS (2017) Review: Current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater. Hydrogeol J 25:3–23. https://doi.org/10.1007/s10040-016-1470-3

    Article  Google Scholar 

  • Dupuit J (1863) Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables: avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des alluvions dans les rivières à fond mobile, 2e édn. [Theoretical and practical studies on the movement of water in open canals and through permeable terrain: with considerations concerning the regime of the great waters, the outlet for them, and the course of alluvium in rivers with a moving bottom, 2nd edn. Dunod, Paris

  • Eckhardt K (2005) How to construct recursive digital filters for baseflow separation. Hydrol Process 19:507–515. https://doi.org/10.1002/hyp.5675

    Article  Google Scholar 

  • Forchheimer P (1886) Über die Ergiebichkeit von Brunnen-Anlagen und Sickerschlitzen [Fertility of well systems and seepage slots]. Zeitschr Architect Ing Ver Hannover 32:539–564

  • Fortin JP, Turcotte R, Massicotte S, Moussa R, Fitzback J, Villeneuve JP (2001) Distributed watershed model compatible with remote sensing and GIS data. I: description of model. J Hydrol Eng 6:91–99. https://doi.org/10.1061/(asce)1084-0699(2001)6:2(91)

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Genuchten MTV (1982) A comparison of numerical solutions of the one-dimensional unsaturated-saturated flow and mass transport equations. Adv Water Resour 5:47–56

    Article  Google Scholar 

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109. https://doi.org/10.1007/s10040-001-0178-0

    Article  Google Scholar 

  • Huet M, Chesnaux R, Boucher M-A, Poirier C (2016) Comparing various approaches for assessing groundwater recharge at a regional scale in the Canadian Shield. Hydrol Sci J. https://doi.org/10.1080/02626667.2015.1106544

    Article  Google Scholar 

  • Jassas H, Merkel B (2014) Estimating groundwater recharge in the semiarid Al-Khazir Gomal Basin, North Iraq. Water 6:2467–2481. https://doi.org/10.3390/w6082467

    Article  Google Scholar 

  • Jie Z, van Heyden J, Bendel D, Barthel R (2011) Combination of soil-water balance models and water-table fluctuation methods for evaluation and improvement of groundwater recharge calculations. Hydrogeol J 19:1487–1502. https://doi.org/10.1007/s10040-011-0772-8

    Article  Google Scholar 

  • Johnson AI (1967) Specific yield: compilation of specific yields of various materials. US Geol Surv Water Suppl Pap 1662-D

  • Kim JH, Jackson RB (2012) A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone J 11. https://doi.org/10.2136/vzj2011.0021RA

  • Lee J-Y, Yi M-J, Hwang D (2005) Dependency of hydrologic responses and recharge estimates on water-level monitoring within a small catchment. Geosci J 9:277–287

    Article  Google Scholar 

  • Meinzer OE (1923) The occurrence of ground water in the United States with a discussion of principles. US Geol Surv Water Suppl Pap 489, 373 pp

  • Misstear BDR, Brown L, Johnston PM (2008) Estimation of groundwater recharge in a major sand and gravel aquifer in Ireland using multiple approaches. Hydrogeol J 17:693–706. https://doi.org/10.1007/s10040-008-0376-0

    Article  Google Scholar 

  • Monfet J (1979) Évaluation du coefficient de ruissellement à l’aide de la méthode SCS modifiée [Runoff coefficient assessment with the SCS modified method]. Bibliothèque nationale du Québec, Montreal, 39 pp

  • Moon S-K, Woo NC, Lee KS (2004) Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. J Hydrol 292:198–209. https://doi.org/10.1016/j.jhydrol.2003.12.030

    Article  Google Scholar 

  • Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2—towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J Hydrol 303:290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026

    Article  Google Scholar 

  • Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289. https://doi.org/10.1016/s0022-1694(03)00225-7

    Article  Google Scholar 

  • Quiroz-Londono OM, Martinez D, Massone H (2012) Estimating aquifer recharge in plains environments based on groundwater level variations. Tecnol Cie Agua 3:123–130

    Google Scholar 

  • Rutledge AT (1998) Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records: update. US Geol Surv 52

  • Saghravani SR, Yusoff I, Tahir W, Othman Z (2015) Estimating recharge based on long-term groundwater table fluctuation monitoring in a shallow aquifer of Malaysian tropical rainforest catchment. Environ Earth Sci 74:4577–4587. https://doi.org/10.1007/s12665-015-4387-6

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. https://doi.org/10.1007/s10040-001-0176-2

    Article  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370. https://doi.org/10.1002/hyp.6335

    Article  Google Scholar 

  • Sibanda T, Nonner JC, Uhlenbrook S (2009) Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area, Zimbabwe. Hydrogeol J 17:1427–1441. https://doi.org/10.1007/s10040-009-0445-z

    Article  Google Scholar 

  • Tremblay P (2005) Étude hydrogéologique de l’aquifère de Saint-Honoré avec emphase sur son bilan hydrique [Hydrogeologic analysis of Saint-Honoré aquifer with emphasis on its water budge]. MSc Thesis, Université du Québec à Chicoutimi, Canada

  • Varni M, Comas R, Weinzettel P, Dietrich S (2013) Application of the water table fluctuation method to characterize groundwater recharge in the Pampa plain, Argentina. Hydrol Sci J-J Sci Hydrol 58:1445–1455. https://doi.org/10.1080/02626667.2013.833663

    Article  Google Scholar 

  • Weeks EP (2002) The Lisse effect revisited. Groundwater 40:652–656. https://doi.org/10.1111/j.1745-6584.2002.tb02552.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. David Noël for his much-appreciated technical guidance during fieldwork. Some of the data used in this study were available thanks to Quebec’s Provincial Government. Finally, without the collaboration of Niobec Mine (Ms. Marie-Line Tremblay), Mr. Christian Bouchard (Saint-Honoré resident) and the Saint-Honoré airport (Mr. Dany Gauthier), gathering the WT observations from the six observation wells on the Caribou River catchment would not have been possible. The authors are grateful to those collaborators and wish to thank them. The editor, Dr. Martin Appold, two anonymous reviewers as well as Dr. Rebecca Doble are thanked for their helpful comments that have contributed to improve the quality of our manuscript. Ms. Josée Kaufmann is thanked for editorial collaboration.

Funding

The authors also wish to thank the Fondation de l’Université du Québec à Chicoutimi (FUQAC) for a research grant awarded to Profs Marie-Amélie Boucher and Romain Chesnaux, which made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Labrecque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labrecque, G., Chesnaux, R. & Boucher, MA. Water-table fluctuation method for assessing aquifer recharge: application to Canadian aquifers and comparison with other methods. Hydrogeol J 28, 521–533 (2020). https://doi.org/10.1007/s10040-019-02073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02073-1

Keywords

Navigation