Skip to main content

Advertisement

Log in

Physical modeling of inland freshwater lens formation and evolution in drylands

Modélisation physique de la formation et de l’évolution de lentilles d’eau douce continentales dans les terres arides

Modelación física de la formación y evolución de lentes de agua dulce continentales en zonas áridas

物理模拟干涸之地内陆淡水透镜体的形成和演化

Modelagem física da formação em camadas de água superficial no interior e evolução das áreas secas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Dryland inland freshwater lenses (IFLs) that have been topographically induced are represented using physically modeled laboratory simulations, to characterize the stages of IFL evolution (i.e. formation, migration, degradation) as a function of recharge rate. Arid regions with shallow brackish to saline groundwater possess IFLs. The position and geometry (i.e. thickness, length) of IFLs over varying temporal and spatial scales is poorly understood due to their transient nature. The physically modeled IFLs in this study formed from an initial recharge pulse, after which IFL geometry was measured over time as it flowed in the direction of simulated groundwater flow. The time required for an IFL to reach the maximum thickness exhibited a negative exponential correlation to recharge rate. At IFL formation, thickness and length were positively correlated, and the ratio of IFL thickness to length exhibited a positive exponential correlation to recharge rate. After IFL formation, the central position of the simulated IFLs migrated laterally in the direction of groundwater flow at a velocity less than the range of applied recharge rates and greater than the groundwater flow velocities. The time required for the IFL to reach a minimum thickness, or IFL degradation, exhibited a positive exponential correlation to recharge rate. The Dupuit-Ghyben-Herzberg solution used to model coastal freshwater lens thickness was tested against the physically modeled IFLs and deemed invalid. A correction factor and modified solution are provided to predict IFL thickness, providing motivation for future analytical and numerical studies on inland variable-density groundwater systems in arid regions globally.

Résumé

Les lentilles d’eau douce continentales (LEDC) en terrains arides qui ont été induites par la topographie sont représentées au moyen de simulations de laboratoire sur modèle physique, afin de caractériser les étapes de l’évolution de la LEDC (c’est à dire sa formation, sa migration, sa dégradation) en fonction du taux de recharge. Les régions arides ayant des eaux souterraines peu profondes saumâtres à salées présentent des LEDC. La position et la géométrie (c’est-à-dire l’épaisseur, la longueur) des LEDC à des échelles de temps et d’espace variées sont mal comprises en raison de leur nature transitoire. Les LEDC modélisées physiquement dans cette étude ont été générées sous l’impulsion d’une recharge initiale, après quoi la géométrie de la LEDC a été mesurée sur la durée pendant qu’elle se déplaçait dans la direction de l’écoulement souterrain simulé. Le temps nécessaire à une LEDC pour atteindre son épaisseur maximale affichait une corrélation exponentielle négative avec le taux de recharge. Au moment où la LEDC se formait, l’épaisseur et la longueur étaient corrélées positivement et le rapport de l’épaisseur de la LEDC à sa longueur montrait une corrélation exponentielle positive avec le taux de la recharge. Après la formation de la LEDC, la position d’abord centrale des LEDC simulées a migré latéralement en suivant la direction des écoulements d’eau souterraine à une vitesse inférieure à la variation des taux de recharge appliqués et supérieure aux vitesses d’écoulement des eaux souterraines. Le temps nécessaire à la LEDC pour atteindre une épaisseur minimale ou sa dégradation, affichait une corrélation exponentielle positive avec le taux de recharge. La solution de Dupuit-Ghyben-Herzberg utilisée pour modéliser l’épaisseur de lentilles d’eau douce côtières a été testée en les confrontant aux LEDC simulées physiquement et jugée non valide. Un facteur de correction et une solution modifiée ont été fournis afin de prédire l’épaisseur de la LEDC, constituant un encouragement pour les futures études analytiques et numériques des systèmes hydrogéologiques continentaux d’épaisseur variable dans les régions arides du monde.

Resumen

Las lentes de agua dulce continentales de zonas áridas (IFL) que han sido inducidas topográficamente se representan mediante simulaciones de laboratorio con modelos físicos, para caracterizar las etapas de la evolución de las IFL (es decir, formación, migración, degradación) en función de la tasa de recarga. Las regiones áridas con aguas subterráneas superficiales salobres a salinas poseen LFI. La posición y la geometría (es decir, el espesor y la longitud) de las IFL a lo largo de escalas temporales y espaciales variables no se comprenden bien debido a su naturaleza transitoria. Las IFLs modelados físicamente en este estudio se formaron a partir de un pulso de recarga inicial, después del cual se midió la geometría de las IFL a lo largo del tiempo a medida que fluía en la dirección del flujo simulado de agua subterránea. El tiempo necesario para que una IFL alcance el espesor máximo mostró una correlación exponencial negativa con la velocidad de la recarga. En la formación de la IFL, el espesor y la longitud se correlacionaron positivamente, y la relación entre el espesor y la longitud de IFL mostró una correlación exponencial positiva con la tasa de recarga. Después de la formación de IFL, la posición central de las IFLs simuladas migró lateralmente en la dirección del flujo de agua subterránea a una velocidad menor que el rango de tasas de recarga aplicadas y mayor que las velocidades de flujo de agua subterránea. El tiempo requerido para que la IFL alcance un espesor mínimo, o degradación del IFL, mostró una correlación exponencial positiva con la tasa de recarga. La solución Dupuit-Ghyben-Herzberg utilizada para modelar el espesor de la lente de agua dulce costera fue probada contra las IFLs modeladas físicamente y se consideró inválida. Se proporciona un factor de corrección y una solución modificada para predecir el espesor de la IFL, lo que motiva futuros estudios analíticos y numéricos sobre los sistemas de aguas subterráneas de densidad variable en regiones áridas de todo el mundo.

摘要

采用物理上模型实验室模拟展示了地形构造方面引起的干涸之地内陆淡水透镜体,以描述其演化阶段(即形成、运移和退化)的特征,并将其作为补给率的一个函数。具有微咸地下水至咸地下水的干旱地区拥有内陆淡水透镜体。由于其瞬时特性,对不同空间和时间尺度的内陆淡水透镜体的位置和几何构造(即厚度和长度)了解甚少。本研究中物理上模拟的内陆淡水透镜体形成于最初的补给脉冲,在这之后,随着内陆淡水透镜体按模拟的地下水流方向流动,对内陆淡水透镜体几何构造进行了测量。内陆淡水透镜体到达最大厚度所需的时间显示出与补给率呈指数相关。在内陆淡水透镜体形成中,厚度和长度呈正相关,内陆淡水透镜体厚度和长度的比值呈正指数相关。内陆淡水透镜体形成之后,模拟的内陆淡水透镜体中间位置顺地下水流方向侧向迁移,其速度慢于应用补给速度的范围,但快于地下水流。内陆淡水透镜体达到最小厚度或者说退化所需的时间与补给率呈正指数相关。针对物理上模拟的内陆淡水透镜体,检测了用来模拟沿海淡水透镜体厚度的Dupuit-Ghyben-Herzberg解决方案,认为该方案无效。提出了修正因子和改进的解决方案,来预测内陆淡水透镜体厚度,为全球干旱地区内陆可变密度地下水系统今后解析和数值研究提供动力。

Resumo

Lentes de águas doces interiores em áreas secas (LADI) que foram induzidas topograficamente foram representadas utilizando simulações laboratoriais modeladas fisicamente, para caracterizar os estágios de evolução de LADI (p.ex. formação, migração, degradação) como uma função da taxa de recarga. Regiões áridas com águas subterrâneas rasas salobras para salinas possuem LADI. A posição e geometria (p.ex. espessura, comprimento) das LADI sobre escalas temporais e espaciais variantes são pobremente entendidas pela sua natureza transiente. As LADI modeladas fisicamente nesse estudo foram formadas a partir de um pulso de recarga inicial, depois que a geometria das LADI foi medida pelo tempo que ela flui na direção do fluxo de águas subterrâneas simulado. O tempo necessário para LADI atingirem a espessura máxima exibiu uma correlação exponencial negativa com a taxa de recarga. Na formação de LADI, espessura e comprimento são positivamente correlacionados, e a razão entre espessura e comprimento das LADI exibiu correlação exponencial positiva para a taxa de recarga. Depois da formação das LADI, a posição central das LADI simuladas migrou literalmente na direção do fluxo das águas subterrâneas em uma velocidade menor que o alcance das taxas de recarga aplicadas e maior que as velocidades de fluxo das águas subterrâneas. O tempo necessário para as LADI atingirem a espessura mínima, ou degradação da LADI, exibiu uma correlação exponencial positiva com a taxa de recarga. A solução Dupuit-Ghyben-Herzberg utilizada para modelar a espessura das camadas de água superficial foi testada contra as LADI modeladas fisicamente e considerado invalido. O fator de correção e a solução modificada foram fornecidos para prever a espessura das LADI, fornecendo motivação para estudos analíticos e numéricos futuros nos sistemas de águas subterrâneas interiores com densidade variável em regiões áridas globalmente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Rashed M, Sherif M (2000) Water resources in the GCC countries: an overview. Water Resour Manag 14(1):59–75

    Article  Google Scholar 

  • Al-Ruwaih F, Hadi K (2005) Water quality trends and management of fresh groundwater at Rawdhatain, Kuwait. Eur J Sci Res 11(3):423–437

  • Al-Ruwaih F, Sayed S, Al-Rashed M (1998) Geological controls on water quality in arid Kuwait. J Arid Environ 38(2):187–204

    Article  Google Scholar 

  • Al-Sarawi M (1995) Surface geomorphology of Kuwait. GeoJournal 35(4):493–503

    Article  Google Scholar 

  • Alsharhan AS, Rizk ZA, Nairn AEM, Bakhit DW, Alhajari SA (2001) Hydrogeochemistry, chap 5. In: Hydrogeology of an arid region: the Arabian Gulf and adjoining areas. Elsevier, Amsterdam, pp 101–124

    Book  Google Scholar 

  • Al-Sulaimi JS, El-Rabaa SM (1994) Morphological and morphostructural features of Kuwait. Geomorphology 11(2):151–167

    Article  Google Scholar 

  • Al-Sulaimi J, Mukhopadhyay A (2000) An overview of the surface and near-surface geology, geomorphology and natural resources of Kuwait. Earth Sci Rev 50(3–4):227–267

    Article  Google Scholar 

  • Al-Weshah RA, Yihdego Y (2016) Flow modelling of strategically vital freshwater aquifers in Kuwait. Environ Earth Sci 75(19):1315

    Article  Google Scholar 

  • Anderson E (2013) Middle East: geography and geopolitics. Routledge, London

    Book  Google Scholar 

  • Barrett B, Heinson G, Hatch M, Telfer A (2002) Geophysical methods in saline groundwater studies: locating perched water tables and fresh-water lenses. Explor Geophys 33(2):115–121

    Article  Google Scholar 

  • Baydon-Ghyben (1898) Nota in verband met de voorgenomen putboring nabil Amsterdam’Tijdschr [Note relating to the intended well drilling near Amsterdam], vol 27. KIVI, The Hague, pp 1888–1889

  • Bergstrom R, Aten R (1965) Natural recharge and localization of fresh ground water in Kuwait. J Hydrol 2(3):213–231

    Article  Google Scholar 

  • Bhandary H, Al-Senafy M, Marzouk F (2015) Usage of carbon isotopes in characterizing groundwater age, flow direction, flow velocity and recharge area. Procedia Environ Sci 25:28–35

    Article  Google Scholar 

  • Carol E, Kruse E, Roig A (2010) Groundwater travel time in the freshwater lenses of Samborombón Bay, Argentina. Hydrol Sci J 55(5):754–762

    Article  Google Scholar 

  • Cellone F, Tosi L, Carol E (2018) Estimating the freshwater-lens reserve in the coastal plain of the middle Río de la Plata estuary (Argentina). Sci Total Environ 630:357–366

    Article  Google Scholar 

  • Cendón DI, Larsen JR, Jones BG, Nanson GC, Rickleman D, Hankin SI, Pueyo JJ, Maroulis J (2010) Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia. J Hydrol 392(3–4):150–163

    Article  Google Scholar 

  • Chesnaux R, Allen D (2008) Groundwater travel times for unconfined island aquifers bounded by freshwater or seawater. Hydrogeol J 16(3):437–445

    Article  Google Scholar 

  • Christellis G, Struckmeier W, Baumie R (2001) Groundwater in Namibia: an explanation to the hydroegeological map. Department of Water Affairs, Division Geohydrology, Windhoek, Namibia

  • Din SU, Al Dousari A, Al Ghadban AN (2007) Sustainable fresh water resources management in northern Kuwait: a remote sensing view from Raudatain basin. Int J Appl Earth Obs Geoinf 9(1):21–31

    Article  Google Scholar 

  • Dose EJ, Stoeckl L, Houben GJ, Vacher HL, Vassolo S, Dietrich J, Himmelsbach T (2014) Experiments and modeling of freshwater lenses in layered aquifers: steady state interface geometry. J Hydrol 509:621–630

    Article  Google Scholar 

  • Dupuit JÉJ (1863) Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables: avec des considérations relatives au régime des grandes eaux, au débouché à leur donner, et à la marche des alluvions dans les rivières à fond mobile [Theoretical and practical studies of the movement of water in open channels and through permeable terrain: with considerations of the regime of the great waters, the outlet to be given to them, and the course of alluvium in rivers with a moving bottom]. Dunod, Paris

  • Eeman S, Leijnse A, Raats PAC, van der Zee SEATM (2011) Analysis of the thickness of a fresh water lens and of the transition zone between this lens and upwelling saline water. Adv Water Resour 34(2):291–302

    Article  Google Scholar 

  • Fadlelmawla A, Hadi K, Zouari K, Kulkarni K (2008) Hydrogeochemical investigations of recharge and subsequent salinization processes at Al-Raudhatain depression in Kuwait/Analyses hydrogéochimiques de la recharge et des processus associés de salinisation dans la dépression de Al-Raudhatain au Koweit. Hydrol Sci J 53(1):204–223

    Article  Google Scholar 

  • Farr AM, Houghtalen R, McWhorter D (1990) Volume estimation of light nonaqueous phase liquids in porous media. Ground Water 28(1):48–56

    Article  Google Scholar 

  • Fetter C (1972) Position of the saline water interface beneath oceanic islands. Water Resour Res 8(5):1307–1315

    Article  Google Scholar 

  • Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Process 2(3):255–266

    Article  Google Scholar 

  • Glover R (1959) The pattern of fresh-water flow in a coastal aquifer. J Geophys Res 64(4):457–459

    Article  Google Scholar 

  • Hadi K, Al-RuwaihF (2008) Geochemical evolution of the fresh groundwater in Kuwait desert. Emirates J Eng Res 13(3):37–45

  • Henry HR (1964) Interfaces between salt water and fresh water in coastal aquifers. US Geol Surv Water Suppl Pap C35-70

  • Herzberg A (1901) Die Wasserversorgung einiger Nordseebäder [The water supply of some North Sea spas]. 44:815–844

  • Himida IH (1981) Groundwater in Kuwait and the environmental factors affecting its quality. Studies Environ Sci 17:121–124

    Article  Google Scholar 

  • Hoekstra TW, Shachak M (1999) Arid lands management: toward ecological sustainability. University of Illinois Press, Champaign, IL

    Google Scholar 

  • Houben G, Noell U, Vassolo S, Grissemann C, Geyh M, Stadler S, Dose EJ, Vera S (2014) The freshwater lens of Benjamín Aceval, Chaco, Paraguay: a terrestrial analogue of an oceanic island lens. Hydrogeol J 22(8):1935–1952

    Article  Google Scholar 

  • Hubbert MK (1940) The theory of ground-water motion. J Geol 48(8, part 1):785–944

    Article  Google Scholar 

  • James WP, Chakka KB, Mascianglioli PA (1996) Control of natural Brine Springs in Brazos River basin, part I: recovery system. J Am Water Resour Assoc 32(3):475–484

    Article  Google Scholar 

  • Jayawickreme DH, Santoni CS, Kim JH, Jobbágy EG, Jackson RB (2011) Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. Ecol Appl 21(7):2367–2379

    Article  Google Scholar 

  • Kwarteng AY, Viswanathan MN, Al-Senafy MN, Rashid T (2000) Formation of fresh ground-water lenses in northern Kuwait. J Arid Environ 46(2):137–155

    Article  Google Scholar 

  • Laattoe T, Werner AD, Woods JA, Cartwright I (2017) Terrestrial freshwater lenses: unexplored subterranean oases. J Hydrol 553:501–507

    Article  Google Scholar 

  • Lewis FM, Walker GR (2002) Assessing the potential for significant and episodic recharge in southwestern Australia using rainfall data. Hydrogeol J 10(1):229–237

    Article  Google Scholar 

  • Milewski A, Sultan M, Al-Dousari A, Yan E (2014) Geologic and hydrologic settings for development of freshwater lenses in arid lands. Hydrol Process 28(7):3185–3194

    Article  Google Scholar 

  • Milton DI (1968) Geology of the Arabian peninsula: Kuwait. US Geological Survey, Reston, VA

    Google Scholar 

  • Ostrovsky VN (2007) Comparative analysis of groundwater formation in arid and super-arid deserts (with examples from Central Asia and northeastern Arabian peninsula). Hydrogeol J 15(4):759–771

    Article  Google Scholar 

  • Parson’s Corporation (1961) Fresh ground-water resources, Rawdatain area, Kuwait: final report. Parson’s, Los Angeles

  • Pennink JMK (1915) Groundwater stroombanen [Groundwater flowpaths]. Stadsdrukkery, Amsterdam

  • Phelps G, Rohrer K (1987) Hydrogeology in the area of a freshwater lens in the Floridan aquifer system, northeast Seminole County, Florida. US Geol Surv Water Resour Invest Rep 96-4181

  • Rizk Z, Alsharhan A (2003) Water resources in the United Arab Emirates. Water Resour Perspect Eval Manage Pol 50:245–264

  • Robinson BW, Al Ruwaih F (1985) The stable-isotopic composition of water and sulfate from the Raudhatain and Umm Al Aish freshwater fields, Kuwait. Chem Geol Isot Geosci 58(1–2):129–136

    Article  Google Scholar 

  • Saleh A, Al-Ruwaih F, Shehata M (1999) Hydrogeochemical processes operating within the main aquifers of Kuwait. J Arid Environ 42(3):195–209

    Article  Google Scholar 

  • Schroth M, Istok J, Ahearn S, Selker J (1995) Geometry and position of light nonaqueous-phase liquid lenses in water-wetted porous media. J Contam Hydrol 19(4):269–287

    Article  Google Scholar 

  • Senay Y (1977) Groundwater resources and artificial recharge in Rawdhatain water field, vol 35. Ministry of Electricity and Water, Kuwait City, Kuwait

  • Shevchenko N (1963) Large fresh water lenses in the deserts of Turkmenistan: fresh water lenses in a desert (in Russian). Academy of Sciences of the USSR, Moscow, pp 24–94

    Google Scholar 

  • Stoeckl L, Houben G (2012) Flow dynamics and age stratification of freshwater lenses: experiments and modeling. J Hydrol 458–459:9–15

    Article  Google Scholar 

  • Stoeckl L, Walther M, Graf T (2016) A new numerical benchmark of a freshwater lens. Water Resour Res 52(4):2474–2489

    Article  Google Scholar 

  • Stuyfzand PJ, Bruggeman G (1994) Analytical approximations for fresh water lenses in coastal dunes. In: Proceedings Proc. 13th Salt Water Intrusion Meeting (SWIM), Cagliari, Italy, pp 15–33

  • Szymkiewicz A, Gumuła-Kawęcka A, Šimůnek J, Leterme B, Beegum S, Jaworska-Szulc B, Pruszkowska-Caceres M, Gorczewska-Langner W, Angulo-Jaramillo R, Jacques D (2018) Simulations of freshwater lens recharge and salt/freshwater interfaces using the HYDRUS and SWI2 packages for MODFLOW. J Hydrol Hydromechan 66(2):246–256

    Article  Google Scholar 

  • UN-ESCWA (2013) Jordan River Basin, chap 6. In: Inventory of shared water resources in Western Asia. UN-ESCWA; Federal Institute for Geosciences and Natural Resources, Beirut

  • Vacher H (1988) Dupuit-Ghyben-Herzberg analysis of strip-island lenses. Geol Soc Am Bull 100(4):580–591

    Article  Google Scholar 

  • Van Der Veer P (1977) Analytical solution for steady interface flow in a coastal aquifer involving a phreatic surface with precipitation. J Hydrol 34(1):1–11

    Article  Google Scholar 

  • Van Weert F, van der Gun J (2012) Saline and brackish groundwater at shallow and intermediate depths: genesis and world-wide occurrence. 39th International Association of Hydrologists, Niagara Falls, NY, International Association of Hydrologists, Wallingford, UK

  • Werner AD, Laattoe T (2016) Terrestrial freshwater lenses in stable riverine settings: occurrence and controlling factors. Water Resour Res 52(5):3654–3662

  • Werner AD, Kawachi A, Laattoe T (2016) Plausibility of freshwater lenses adjacent to gaining rivers: validation by laboratory experimentation. Water Resour Res 52(11):8487–8499

    Article  Google Scholar 

  • Young ME, Macumber PG, Watts MD, Al-Toqy N (2004) Electromagnetic detection of deep freshwater lenses in a hyper-arid limestone terrain. J Appl Geophys 57(1):43–61

    Article  Google Scholar 

  • Zhao J, Wen Z, Shu L, Zhen L, Zhou C, Liu L (2009) A laboratory model of the evolution of an island freshwater lens. IAHS Publ. 330, IAHS, Wallingford, UK, pp 154–161

Download references

Acknowledgments

The authors thank the anonymous reviewers who provided valuable and appreciated feedback.

Funding

The authors would like to thank the Society of Exploration Geophysics and the University of Georgia, Department of Geology for the financial support of this research, particularly the Gary and Lorene Groundwater Exploration Scholarship and the Watts Wheeler Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Milewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotz, R.R., Milewski, A.M. Physical modeling of inland freshwater lens formation and evolution in drylands. Hydrogeol J 27, 1597–1610 (2019). https://doi.org/10.1007/s10040-019-01940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-01940-1

Keywords

Navigation