Skip to main content

Advertisement

Log in

Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

Durabilité des eaux souterraines et interaction eaux souterraines/eaux de surface dans le Bassin aride du Dunhuang, Nord-Ouest de la Chine

Sostenibilidad del agua subterránea y la interacción agua subterránea/superficial en la cuenca árida de Dunhuang, noroeste de China

中国西北地区干旱的敦煌盆地地下水的可持续性和地下水/地表水相互作用

Sustentabilidade das águas subterrâneas e interação das águas subterrâneas/superficiais em na bacia árida de Dunhuang, noroeste da China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

Résumé

Le Bassin du Dunhuang, un bassin intérieur typique du Nord-Ouest de la Chine, souffre d’un net manque d’eaux souterraines et de la disparition occasionnelle du Lac du Croissant. Dans cette région, les interactions eaux souterraines-eaux de surface sont importantes pour la durabilité des ressources en eaux souterraines. Un modèle tridimensionnel d’écoulement souterrain transitoire a été établi et calé sous MODFLOW 2000; il a été utilisé pour prédire les changements de ces interactions une fois achevé un projet de dérivation d’eau. Les résultats de la simulation indiquent qu’une amenée d’eau depuis l’extérieur du bassin dans les rivières Shule et Danghe pourrait inverser le bilan négatif des eaux souterraines dans le Bassin. Les interactions eaux de rivière/eaux souterraines contrôlent l’hydrologie souterraine, alors que les pertes de la rivière vers les eaux souterraines du Bassin s’accroîtront de 3,114 × 104 m3/j en 2017 à 11,875 × 104 m3/j en 2021 et de 17,039 × 104 m3/j en 2036. Comparativement, la décharge de l’eau souterraine vers les rivières décroîtra de 3,277 × 104 m3/j en 2017 à 1857 × 104 m3/j en 2021 et à 510 × 104 m3/j vers 2036; ainsi, l’hydrologie basculera d’un régime de décharge des eaux souterraines à un régime de recharge des eaux souterraines après la mise en œuvre du projet de dérivation de l’eau. La simulation montre que l’accroissement de l’infiltration nette de la rivière en lien avec le projet de dérivation engendrera une remontée de la surface de la nappe, augmentant ainsi significativement le niveau de l’eau du Lac du Croissant du fait de sa connexion avec la surface piézométrique. Cependant, l’évaporation phréatique régionale sera renforcée, ce qui peut intensifier la salinization des sols dans le Bassin du Dunhuang. Ces résultats peuvent orienter le schéma d’allocation de l’eau pour le projet de dérivation, dans l’objectif de tempérer l’épuisement des eaux souterraines et de réduire le problème géo-environnemental.

Resumen

La cuenca de Dunhuang, una cuenca continental típica en el noroeste de China sufre una pérdida neta de agua subterránea y la desaparición ocasional del lago Crescent. Dentro de esta región, las interacciones agua subterránea/superficial son importantes para la sostenibilidad de los recursos hídricos subterráneos. Se estableció y calibró un modelo tridimensional de flujo de agua subterránea utilizando MODFLOW 2000, que se utilizó para predecir cambios en estas interacciones una vez que se completa un proyecto de desviación de agua. Los resultados simulados indican que la introducción de agua desde el exterior de la cuenca de los ríos Shule y Danghe podría revertir el balance negativo de agua subterránea en la cuenca. Las interacciones agua de río/agua subterránea controlan la hidrología subterránea, donde la filtración del río hacia el agua subterránea en la cuenca aumentará de 3,114 × 104 m3/a en 2017 a 11,875 × 104 m3/a en 2021, y a 17,039 × 104 m3/a en 2036. En comparación, la descarga de agua subterránea a los ríos disminuirá de 3,277 × 104 m3/a en 2017 a 1857 × 104 m3/a en 2021, y a 510 × 104 m3/a en 2036; por lo tanto, la hidrología cambiará de descarga de aguas subterráneas a recarga de agua subterránea después de implementar el proyecto de desviación de agua. La simulación indica que la mayor infiltración neta del río debido al proyecto de desviación de agua elevará el nivel freático y luego aumentará efectivamente el nivel del agua del lago Crescent, ya que el nivel del lago es contiguo al nivel freático. Sin embargo, se mejorará la evaporación freática regional, lo que puede intensificar la salinización del suelo en la cuenca de Dunhuang. Estos resultados pueden guiar el esquema de asignación de agua para el proyecto de desvío de agua a fin de aliviar el agotamiento del agua subterránea y mitigar el problema geoambiental.

摘要

敦煌盆地是中国西北地区典型的内陆盆地,正在遭受着地下水的减少以及月牙湖间歇性的干涸。在这个地区内,地下水/地表水的相互作用对于地下水资源的可持续性非常重要。本研究利用MODFLOW 2000建立了一个三维瞬时地下水流模型并对其进行了校准,校准后的模型被用来预测调水项目完工后这些相互作用发生的变化。模拟结果显示,从盆地之外引来的水进入疏勒河和党河可以扭转敦煌盆地的地下水负均衡状态。河水/地下水相互作用控制着该区地下水的水文情况,河水渗漏到盆地地下水的水量将从2017年的3,114 × 104 m3/year达到2021年的11,875 × 104 m3/year,并且达到2036年的17,039 × 104 m3/year。而地下水排泄到河流的水量将从2017年的3,277 × 104 m3/year减少到2021年的1857 × 104 m3/year,到2036年的510 × 104 m3/year。因此,调水工程实施后,水文模式将从地下水排泄变成地下水补给。模拟结果表明,由于调水工程增加的净河流渗入量将提高水位,从而有效地增加月牙湖的水位,因为湖水位与地下水位是连续的。然而,区域潜水蒸发量将会提高,可能会加剧敦煌盆地的土壤盐碱化。这些结果可指导调水工程的水分配规划,减缓地下水的枯竭及缓解地质环境问题。

Resumo

A bacia de Dunhuang, uma típica bacia interior no noroeste da China, sofre com a perda efetiva de águas subterrâneas e o ocasional desaparecimento do lago Crescent. Dentro desta região, as interações entre águas subterrâneas/superficiais são importantes para a sustentabilidade dos recursos hídricos subterrâneos. Um modelo de fluxo tridimensional transiente foi estabelecido e calibrado usando o MODFLOW 2000, que foi usado para estimar as mudanças nessas interações uma vez que um projeto de transposição de água seja concluído. Os resultados simulados indicam que a introdução de água de fora da bacia nos rios Shule e Danghe pode reverter o equilíbrio negativo das águas subterrâneas na bacia. Interações rio-aquífero controlam a hidrologia das águas subterrâneas, onde o escoamento do rio para o aquífero na bacia pode aumentar de 3,114 × 104 m3/ano em 2017 para 11,875 × 104 m3/ano em 2021, e para 17,039 × 104 m3/ano em 2036. Em comparação, a descarga de águas subterrâneas para os rios pode reduzir de 3,277 × 104 m3/ano in 2017 para 1857 × 104 m3/ano in 2021 e para 510 × 104 m3/ano em 2036; assim a hidrologia pode mudar da descarga das águas subterrâneas para recarga das águas subterrâneas depois de implementar o projeto de transposição de água. A simulação indica que o aumento efetivo da infiltração do rio devido ao projeto de transposição poderá aumentar o nível freático e então elevar o nível da água do lago Crescent, uma vez que o nível é contiguo com o nível freático. Entretanto, a evaporação freática regional será reforçada, o que pode intensificar a salinização do solo na Bacia de Dunhuang. Estes resultados podem orientar o esquema de atribuições para o projeto de transposição para aliviar a depleção das águas subterrâneas e mitigar o problema geoambiental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Banks EW, Brunner P, Simmons CT (2011) Vegetation controls on variably saturated processes between surface water and groundwater and their impact on the state of connection. Water Resour Res 47(11):178-186

    Article  Google Scholar 

  • Brunner P, Li HT, Kinzelbach W, Li WP (2007) Generating soil electrical conductivity maps at regional level by integrating measurements on the ground and remote sensing data. Int J Remote Sens 28(15):3341-3361

    Article  Google Scholar 

  • Brunner P, Li HT, Kinzelbach W, Li WP, Dong XG (2008) Extracting phreatic evaporation from remotely sensed maps of evapotranspiration. Water Resour Res 44(8):1291-1295

    Article  Google Scholar 

  • Cao G, Zheng C, Scanlon BR, Liu J, Li W (2013) Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour Res 49(1):159-175

    Article  Google Scholar 

  • Cartwright I, Weaver TR (2005) Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability. Hydrogeol J 13(5-6):752-770

    Article  Google Scholar 

  • Chen Y, Chen C, Yan C, Hao M, Yu S, Wang Y, Jia G, Cao B, Qu J, Han W, Liu H, Wang Z, Zhao J, Jiang W (2008) The investigation of reasonable exploration and utilization in groundwater in Shule River catchment in Hexi Corridor (in Chinese). Geological Publication, Beijing, pp 234

  • Ding HW, Zhao C, Huang XH (2001) Ecological environment and desertification in Shulehe River Basin. Arid Zone Res 2:001

    Google Scholar 

  • Ding HW, Gong KC (2004) Analyses of the reasons and countermeasures for the decline in the water level of the Yueya Spring Lake near Dunhuang. Hydrogeol Eng Geol 31(6):74-77

    Google Scholar 

  • Edmunds WM, Guendouz AH, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18(6):805-822

    Article  Google Scholar 

  • Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21(12):2148-2170

    Article  Google Scholar 

  • Gansu Institute of Geo-Environment Monitoring (GIG-EM) (2009) The investigation and evaluation of the groundwater dynamic in Shule River catchment of Hexi Corridor, Gansu, China (in Chinese). GIG-EM, Lanzhou, China

  • Han D, Song X, Currell MJ, Cao G, Zhang Y, Kang Y (2011) A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay agricultural development area, Northwest China: implications for soil and groundwater salinity resulting from surface water transfer for irrigation. J Hydrol 405(3-4):217-234

    Article  Google Scholar 

  • Harbaugh A W, Banta E R, Hill M C, McDonald M G (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 92-134

  • He J, Ma J, Zhao W, Sun S (2015) Groundwater evolution and recharge determination of the quaternary aquifer in the Shule River basin, Northwest China. Hydrogeol J 23(8):1745-1759

    Article  Google Scholar 

  • Hu Y, Moiwo JP, Yang Y, Han S, Yang Y (2010) Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain. J Hydrol 393(3):219-232

    Article  Google Scholar 

  • Hu L, Xu ZX, Huang WD (2016) Development of a river-groundwater interaction model and its application to a catchment in northwestern china. J Hydrol 543:483-500

  • Jiao JJ (2010) Crescent Moon Spring: a disappearing natural wonder in the Gobi Desert, China. Ground Water 48(1):159-163

    Article  Google Scholar 

  • Keesari T, Kulkarni UP, Deodhar A, Ramanjaneyulu PS, Sanjukta AK, Kumar US (2014) Geochemical characterization of groundwater from an arid region in India. Environ Earth Sci 71(11):4869-4888

    Article  Google Scholar 

  • Kinzelbach W, Bauer P, Siegfried T, Brunner P (2003) Sustainable groundwater management-problems and scientific tools. Epospdes 26(4):279-284

    Google Scholar 

  • Kobryn HT, Lantzke R, Bell R, Admiraal R (2015) Remote sensing for assessing the zone of benefit where deep drains improve productivity of land affected by shallow saline groundwater. J Environ Manag 150:138-148

    Article  Google Scholar 

  • Lamontagne S, Leaney FW, Herczeg AL (2005) Groundwater-surface water interactions in a large semi-arid floodplain: implications for salinity management. Hydrol Process 19(16):3063-3080

    Article  Google Scholar 

  • Lamontagne S, Taylor A, Cook P, Crosbie R, Brownbill R, Williams R, Brunner P (2014) Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling, Australia). Hydrol Process 28(4):1561-1572

    Article  Google Scholar 

  • Li G, Li X, Qu J (2014) Investigating the interaction between crescent spring and groundwater in a Chinese dune-lake environment using hydraulic gradient and isotope analysis methods. The Holocene 24(7):798-804

    Article  Google Scholar 

  • Li X (2003) Pressure of water shortage on agriculture in arid region of China. Chin Geogr Sci 13(2):124-129

    Article  Google Scholar 

  • Ma J, He J, Qi S, Zhu G, Zhao W, Mike Edmunds W, Zhao Y (2013) Groundwater recharge and evolution in the Dunhuang Basin, northwestern China. Appl Geochem 28:19-31

    Article  Google Scholar 

  • Ma JZ, Wang XS, Edmunds WM (2005) The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China: a case study of the Shiyang River Basin. J Arid Environ 61(2):277-295

    Article  Google Scholar 

  • Malcolm IA, Soulsby C, Youngson AF, Petry J (2003) Heterogeneity in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream. Hydrol Process 17(3):601-617

    Article  Google Scholar 

  • Nativ R, Adar E, Dahan O, Nissim I (1997) Water salinization in arid regions-observations from the Negev Desert, Israel. J Hydrol 196(1-4):271-296

    Article  Google Scholar 

  • Reynolds JF, Stafford Smith DM, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernandez RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316(5826):847-851

    Article  Google Scholar 

  • Schilling OS, Doherty J, Kinzelbach W, Wang H, Yang PN, Brunner P (2014) Using tree ring data as a proxy for transpiration to reduce predictive uncertainty of a model simulating groundwater-surface water-vegetation interactions. J Hydrol 519:2258-2271

    Article  Google Scholar 

  • Shirazi SM, Zardari NH, Yusop Z, Ismail Z (2014) Groundwater quality assessment for potential source of irrigation at Karimganj Basin in Bangladesh. J Environ Prot Ecol 15(3):860-869

    Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10(1):52-67

    Article  Google Scholar 

  • Sun Z, Ma R, Wang Y, Hu Y, Sun L (2016) Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China. Hydrol Process 30(12):1884-1902

    Article  Google Scholar 

  • Tian H (2011) Numerical simulation of the wind field by WRF and sand transport research on the Mingshashan region of Dunhuang. Cold and Arid Regions Environmental Engineering Research Institute, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Lanzhou, China

    Google Scholar 

  • Vanderzalm J L, Jeuken B M, Wischusen J D H, Pavelic P, La Salle C L G, Knapton A, Dillon P J (2011) Recharge sources and hydrogeochemical evolution of groundwater in alluvial basins in arid central Australia. J Hydrol 397(1-2):71-82

  • Wang L, Li G, Dong Y, Han D, Zhang J (2015) Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in an arid region: a case study in the upper middle reaches of the Shule River Basin, northwestern China. Environ Earth Sci 73(4):1901-1915

    Article  Google Scholar 

  • Wang W, Li J, Feng X, Chen X, Yao K (2011) Evolution of stream-aquifer hydrologic connectedness during pumping: experiment. J Hydrol 402(3):401-414

    Article  Google Scholar 

  • Yang JC, Shi J, Tao LI (2013) Tracing test for seepage velocity in the aeolian sand aquifer of the Crescent Lake near Dunhuang. Hydrogeol Eng Geol 40(3):24-28

    Google Scholar 

  • Yardley J (2005) China’s miracle in the desert is drying up. The New York Times, May 28. http://www.nytimes.com/2005/05/27/world/asia/27iht-china.Html. Accessed February 2018

  • Zhu GF, Li ZZ, Su YH, Ma JZ, Zhang YY (2007) Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. J Hydrol 333(2-4):239-251

    Article  Google Scholar 

  • Zhu GF, Su YH, Feng Q (2008) The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China. Hydrogeol J 16(1):167-182

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Institute of Geo-Environmental Monitoring in Gansu Province of China for providing hydrogeological data.

Funding Information

This research was financially supported by National Key research and development program (2017YFC0406105), National Natural Science Foundations of China (NSFC-91325101) and the Grant for Innovative Research Groups of the National Natural Science Foundation of China (41521001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Ma.

Additional information

Published in the special issue “Groundwater sustainability in fast-developing China”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Ma, R., Hu, Y. et al. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China. Hydrogeol J 26, 1559–1572 (2018). https://doi.org/10.1007/s10040-018-1743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1743-0

Keywords

Navigation