Skip to main content

Advertisement

Log in

Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture

Transport multi-échelle des nitrates dans un système aquifère de grès soumis à une agriculture intensive

Transporte de nitrato en múltiples escalas en un sistema acuífero de areniscas bajo agricultura intensiva

强烈农业活动下砂岩含水层系统多尺度硝酸盐运移

Transporte de nitrato multiescala em um sistema aquífero arenítico sob agricultura intensiva

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Nitrate transport in heterogeneous bedrock aquifers is influenced by mechanisms that operate at different spatial and temporal scales. To understand these mechanisms in a fractured sandstone aquifer with high porosity, a groundwater-flow and nitrate transport model—reproducing multiple hydraulic and chemical targets—was developed to explain the actual nitrate contamination observed in groundwater and surface water in a study area on Prince Edward Island, Canada. Simulations show that nitrate is leached to the aquifer year-round, with 61% coming from untransformed and transformed organic sources originating from fertilizers and manure. This nitrate reaches the more permeable shallow aquifer through fractures in weathered sandstone that represent only 1% of the total porosity (17%). Some of the nitrate reaches the underlying aquifer, which is less active in terms of groundwater flow, but most of it is drained to the main river. The river-water quality is controlled by the nitrate input from the shallow aquifer. Groundwater in the underlying aquifer, which has long residence times, is also largely influenced by the diffusion of nitrate in the porous sandstone matrix. Consequently, following a change of fertilizer application practices, water quality in domestic wells and the river would change rapidly due to the level of nitrate found in fractures, but a lag time of up to 20 years would be necessary to reach a steady level due to diffusion. This demonstrates the importance of understanding nitrate transport mechanisms when designing effective agricultural and water management plans to improve water quality.

Résumé

Le transport des nitrates dans les aquifères hétérogènes de substrat rocheux est. influencé par des mécanismes qui fonctionnent à différentes échelles spatiales et temporelles. Pour comprendre ces mécanismes dans un aquifère de grès fracturé avec une porosité élevée, un modèle de transport d’eau souterraine et de nitrate—reproduisant de multiples cibles chimiques et hydrauliques—a été développé pour expliquer la contamination actuelle en nitrates dans les eaux souterraines et les eaux de surface dans une zone d’étude sur l’île du Prince Edward au Canada. Les simulations montrent que le nitrate est. lixivié vers l’aquifère au cous de l’année, avec 61% provenant de sources organiques non transformées et transformées provenant d’engrais et de fumier. Ce nitrate atteint l’aquifère peu profond plus perméable par des fractures dans le grès altéré qui représente seulement 1% de la porosité totale (17%). Certains des nitrates atteignent l’aquifère sous-jacent, qui est. moins actif en termes d’écoulement d’eaux souterraines, mais la plupart sont drainées vers la rivière principale. La qualité de l’eau de la rivière est. contrôlée par l’apport en nitrate de l’aquifère peu profond. L’eau souterraine dans l’aquifère sous-jacent, qui est. caractérisée par un long temps de séjour, est. également largement influencée par la diffusion des nitrates dans la matrice poreuse du grès. Par conséquent, suite à un changement des pratiques d’application des engrais, la qualité de l’eau dans les puits domestiques et la rivière changerait rapidement en raison du niveau de nitrate trouvé dans les fractures, mais un délai de 20 ans serait nécessaire pour atteindre un niveau stable en raison de la diffusion. Cela démontre l’importance de la compréhension des mécanismes de transport des nitrates lors de la conception de plans efficaces de gestion de l’agriculture et de l’eau pour améliorer la qualité de l’eau.

Resumen

El transporte de nitratos en los acuíferos heterogéneos en la roca de base está influenciado por mecanismos que operan a diferentes escalas espaciales y temporales. Para entender estos mecanismos en un acuífero de arenisca fracturada con alta porosidad, se desarrolló un modelo de flujo de agua subterránea y nitrato—reproduciendo múltiples objetivos hidráulicos y químicos—para explicar la contaminación real de nitratos observada en el agua subterránea y superficial en un área de estudio en Prince Edward Isla, Canadá. Las simulaciones muestran que el nitrato es lixiviado al acuífero durante todo el año, y el 61% proviene de fuentes orgánicas no transformadas y transformadas procedentes de fertilizantes y estiércol. Este nitrato alcanza el acuífero superficial más permeable a través de las fracturas en una arenisca degradada que representan sólo el 1% de la porosidad total (17%). Algunos de los nitratos alcanzan el acuífero subyacente, que es menos activo en términos de flujo de agua subterránea, pero la mayor parte se drena al río principal. La calidad del agua del río es controlada por la entrada de nitrato desde el acuífero poco profundo. El agua subterránea en el acuífero subyacente, que tiene largos tiempos de residencia, también está fuertemente influenciada por la difusión de nitratos en la matriz porosa de arenisca. Por consiguiente, tras un cambio en las prácticas de aplicación de fertilizantes, la calidad del agua en los pozos domésticos y en el río cambiaría rápidamente debido al nivel de nitrato encontrado en las fracturas, pero sería necesario un tiempo de retardo de hasta 20 años para alcanzar un nivel estable debido a los procesos de difusión. Esto demuestra la importancia de comprender los mecanismos de transporte de nitratos al diseñar planes eficaces de manejo agrícola y de agua para mejorar la calidad del agua.

摘要

异质基岩含水层中的硝酸盐运移受到不同空间和时间尺度的机理影响。为了了解具有很高孔隙度的断裂砂岩含水层中的这些机理,建立了能够复制多重水力和化学目标的一个地下水流和硝酸盐运移模型,用来解释在加拿大Prince Edward岛上研究区地下水和地表水中观测到的实际硝酸盐污染。模拟结果显示,硝酸盐全年都在淋滤至含水层,其中61%为来自未转化和转化的有机源,而这些有机源来源于化肥和有机肥。此类硝酸盐通过只占总孔隙度(17%)1%的风化砂岩中的断裂达到较透水的浅层含水层。一些硝酸盐达到地下水流不太活跃的下伏含水层,但大部分硝酸盐被排到主要河流中。河水水质受到来自浅层含水层中硝酸盐流入量的控制。下伏含水层中的地下水具有很长的滞留时间,在很大程度上也受到多孔隙砂岩基质中硝酸盐扩散的影响。因此,改变使用化肥之后,根据断裂中观测的硝酸盐含量水平,发现家庭用水井和河流的水质会迅速变化,但由于扩散原因,需要长达20年滞后时间达到稳定水平。这说明在设计有效农业和水管理计划、提高水质时了解硝酸盐运移机理是多么的重要。

Resumo

O transporte de nitratos em aquíferos de bases rochosas heterogêneas é influenciado por mecanismos que operam em diferentes escalas espaciais e temporais. Para entender esses mecanismos em um aquífero arenítico fraturado com alta porosidade, um modelo de transporte de nitrato e fluxo de águas subterrâneas—reproduzindo múltiplos alvos hidráulicos e químicos—foi desenvolvido para explicar a contaminação de nitrato atual observada nas águas subterrâneas e superficiais em uma área de estudo na Ilha Prince Edward, Canadá. As simulações demonstram que o nitrato foi lixiviado para o aquífero por volta de 1 ano, com 61% provenientes de fontes orgânicas transformadas e não transformadas originadas de fertilizantes e esterco. Esse nitrato atinge o aquífero raso mais permeável através das fraturas no aquífero desgastado que representa apenas 1% da porosidade total (17%). Parte do nitrato atinge o aquífero subjacente que é menos ativo em questão do fluxo de águas subterrâneas, mas a maior parte é drenada para o rio principal. A qualidade da água do rio é controlada pela entrada de nitrato do aquífero raso. As águas subterrâneas no aquífero subjacente, que possuem longos períodos de permanência, também são amplamente influenciadas pela difusão do nitrato na matriz do arenito poroso. Consequentemente, seguindo uma mudança nas práticas de aplicação dos fertilizantes, a qualidade da água nos poços domésticos e no rio mudaria rapidamente por causa do nível de nitrato encontrado nas fraturas, mas um intervalo de tempo de mais de 20 anos seria necessário para atingir um nível estático por causa da difusão. Isso demonstra a importância de se entender os mecanismos de transporte de nitrato na criação dos planos de gestão de água e agricultura para melhorar a qualidade da água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agriculture and Agri-Food Canada (AAFC) (2004a) Census of agriculture: soil landscapes of Canada (SLC), version 3. http://sis.agr.gc.ca/cansis/nsdb/slc/index.html. Accessed August 2017

  • Agriculture and Agri-Food Canada (AAFC) (2004b) Water survey of Canada sub-sub drainage areas (WSCSSDA), version 5. https://catalogue.data.gov.bc.ca/dataset/water-survey-of-canada-sub-sub-drainage-areas. Accessed August 2017

  • Anderson MP, Woessner WW, Randall JH (2015) Applied groundwater modeling, 2nd edn. Academic, San Diego

    Google Scholar 

  • Atlantic AgriTech (AAT) (2006) Agricultural land use practices in the Wilmot River watershed area of the Prince Edward Island. Report to the Prince Edward Island Department of Environment, Energy and Forestry, Charlottetown, PEI, Canada, 22 pp

  • Beaudoin N, Saad JK, Van Laethem C, Machet JM, Maucorps J, Mary B (2005) Nitrate leaching in intensive agriculture in northern France: effect of farming practices, soils and crop rotations. Agric Ecosyst Environ 111:292–310

    Article  Google Scholar 

  • Benson VS, VanLeeuwen JA, Sanchez J, Dohoo IR, Somers GH (2006) Spatial analysis of land use impact on ground water nitrate concentrations. J Environ Qual 35:421–432

    Article  Google Scholar 

  • Blombäck K, Eckersten H, Lewan E, Aronsson H (2003) Simulations of soil carbon and nitrogen dynamics during seven years in a catch crop experiment. Agric Syst 76:95–114

    Article  Google Scholar 

  • Bracmort KS, Arabi M, Frankenberger JR, Engel BA, Arnold JG (2006) Modeling long-term water quality impact of structural BMPs. Am Soc Agric Biol Eng 49(2):367–374

    Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL, 328 pp

    Google Scholar 

  • Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P, Beaudoin N (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosyst Environ 135:268–278

    Article  Google Scholar 

  • Cui T, Yang J, Samson I (2010) Numerical modeling of hydrothermal fluid flow in the Paleoproterozoic Thelon Basin, Nunavut, Canada. J Geochem Explor 106:69–76

    Article  Google Scholar 

  • Cui T, Yang J, Samson I (2012) Solute transport across basement/cover interfaces by buoyancy driven thermohaline convection: implications for the formation of unconformity-related uranium deposits. Am J Sci 312:994–1027

    Article  Google Scholar 

  • De Jong R, Qian B, Yang JY (2008) Modelling nitrogen leaching in Prince Edward Island under climate change scenarios. Can J Soil Sci 88:61–78

    Article  Google Scholar 

  • Diersch HJG (2004) FEFLOW: finite element subsurface flow and transport simulation system—reference manual. DHI-WASY, Berlin, 277 pp

  • Dimitriou E, Moussoulis E (2010) Hydrological and nitrogen distributed catchment modeling to assess the impact of future climate change at Trichonis Lake, western Greece. Hydrogeol J 18(2):441–454

    Article  Google Scholar 

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York, 506 pp

    Google Scholar 

  • Francis RM (1989) Hydrogeology of the Winter River basin, Prince Edward Island. Dept. of the Environment, Water Resources Branch, Charlottetown, PEI, Canada, 117 pp

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604 pp

    Google Scholar 

  • Furey PR, Gupta VK (2001) A physically based filter for separating base flow from streamflow time series. Water Resour Res 11:2709–2722

    Article  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: two hundred years of change. Ambio 31:64–77

  • Gburek WJ, Folmar GJ, Urban JB (1999) Field data and ground water modeling in a layered fractured aquifer. Ground Water 2:175–184

    Article  Google Scholar 

  • Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28(7):1955–1974

    Article  Google Scholar 

  • Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 2:289–296

    Article  Google Scholar 

  • Hattermann FF, Krysanova V, Habeck A, Bronstert A (2006) Integrating wetlands and riparian zones in river basin modelling. Ecol Model 199(4):379–392

    Article  Google Scholar 

  • Health Canada (2004) Summary of guidelines for Canadian drinking water quality. Prepared by the Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment, April 2004. https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/guidelines-canadian-drinking-water-quality-summary-table-health-canada-2012.html. Accessed August 2017

  • Jiang Y, Somers GH (2009) Modeling effects of nitrate from non-point sources on groundwater quality in an agricultural watershed in Prince Edward Island, Canada. Hydrogeol J 17:707–724

  • Keeney DR, Follett RF (1991) Managing nitrogen for ground water quality and farm profitability: overview and introduction. In: Follet RF et al (eds) Managing nitrogen for ground water quality and farm profitability. Soil Science Society of America, Madison, WI, pp 1–7

    Google Scholar 

  • Kim K, Anderson MP, Bowser CJ (1999) Model calibration with multiple targets: a case study. Ground Water 37(3):1745–6584

    Article  Google Scholar 

  • Laurent F, Ruelland D (2011) Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale. J Hydrol 409:440–450

    Article  Google Scholar 

  • Liao SL, Savard MM, Somers GH, Paradis D, Jiang Y (2005) Preliminary results from water-isotope characterization of groundwater, surface water, and precipitation in the Wilmot River watershed, Prince Edward Island. Current Research 2005-D4, Geological Survey of Canada, Ottawa, 10 pp

  • Lunn R, Adams R, Mackay R, Dunn S (1996) Development and application of a nitrogen modelling system for large catchments. J Hydrol 174:285–304

    Article  Google Scholar 

  • Michael HM, Voss CI (2009) Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh. Hydrogeol J https://doi.org/10.1007/s10040-009-0443-1

  • Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1206

    Article  Google Scholar 

  • Molénat J, Gascuel-Odoux C (2002) Modelling flow and nitrate transport in groundwater for the prediction of water travel times and of consequences of land use on water quality. Hydrol Process 16:479–492

    Article  Google Scholar 

  • Mutch RD Jr, Scott JI (1993) Cleanup of fractured rock aquifers: implications of matrix diffusion. Environ Monit Assess 24:45–70

    Article  Google Scholar 

  • Pankow JF, Cherry JA (1996) Dense chlorinated solvents and other DNAPLs in groundwater: history, behavior, and remediation. Waterloo Press, Waterloo, ON, 522 pp

  • Paradis D, Lefebvre R (2013) Single-well interference slug tests to assess the vertical hydraulic conductivity of unconsolidated aquifers. J Hydrol 478:102–118

    Article  Google Scholar 

  • Paradis D, Ballard J-M, Savard MM, Lefebvre R, Jiang Y, Somers G, Liao SL, Rivard C (2006) Impact of agricultural activities on nitrates in ground and surface water in the Wilmot watershed, PEI, Canada. Sea to Sky Geotechnique 2006: proceedings of the 59th Canadian Geotechnical Conference and the 7th Joint CGS/IAH-CNC Groundwater Specialty Conference, Vancouver, October 2006, pp 1308–1315

  • Paradis D, Vigneault H, Lefebvre R, Savard MM, Ballard J-M, Qian B (2016) Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada. Earth Syst Dynam 7:183–202

    Article  Google Scholar 

  • Prest VK (1973) Surficial deposits of Prince Edward Island. “A” Series Map 1366A, Geological Survey of Canada, Ottawa

  • Risser DW, Gburek WJ, Folmar GJ (2005) Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the eastern United States. US Geol Surv Sci Invest Rep 2005–5038, pp 31

  • Rode M, Thiel E, Franko U, Wenk G, Hesser F (2009) Impact of selected agricultural management options on the reduction of nitrogen loads in three representative meso scale catchments in central Germany. Sci Total Environ 407:3459–3472

    Article  Google Scholar 

  • Savard MM, Somers GH (eds) (2007) Consequences of climatic changes on contamination of drinking water by nitrate on Prince Edward Island. Earth Sciences Sector report, Geological Survey of Canada, Ottawa, 142 pp

  • Savard MM, Simpson S, Smirnoff A, Paradis D, Somers GH, van Bochove E, Thériault G (2004) A study of the nitrogen cycle in the Wilmot River Watershed, Prince Edward Island: initial results. Fifth Joint CGS/IAH-CNC Conference GeoQuébec 2004, Session 4A on water quality, Quebec City, October 2004, pp 20–27

  • Savard MM, Paradis D, Somers G, Liao S, van Bochove E (2007) Winter nitrification contributes to excess NO3 in groundwater of an agricultural region: a dual-isotope study. Water Resour Res 43:W06422

    Article  Google Scholar 

  • Savard MM, Somers G, Smirnoff A, Paradis D, van Bochove E, Liao SL (2010) Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination. J Hydrol 381(1–2):134–141

    Article  Google Scholar 

  • Schroeder PR, Gibson AC, Smolen MD (1994) The hydrologic evaluation of landfill performance (HELP) model. Engineering documentation for version 3, EPA/600/R-94/168b, US Environmental Protection Agency, Cincinnati, Ohio, pp 267

  • Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225

  • Somers GH (1992) Agricultural impacts on water quality: a Prince Edward Island perspective. Proceedings of the National workshop on Agricultural Impacts on Water Quality: Canadian Perspectives, CARP, Ottawa, April 1992, 8 pp

  • Somers GH (1998) Distribution and trends for the occurrence of nitrate in Prince Edward Island groundwater. In: Proceedings from Nitrate-Agricultural Sources and Fate in the Environment: Perspectives and Direction. Eastern Canada Soil and Water Conservation Center, Grand Falls, NB, pp 19–26

  • Somers GH, Raymond B, Uhlman W (1999) P.E.I. water quality interpretative report 99. Prince Edwards Island, Charlottetown and Environment Canada, Ottawa, 67 pp

  • Somers G, Savard MM, Paradis D (2007) Mass balance calculations to estimate nitrate proportions from various sources in the agricultural Wilmot watershed of Prince Edward Island. In: The 60th Canadian Geotechnical Conference and 8th Joint GCS/IAH-CNC Groundwater Conference, Ottawa, October 21–24, 2007, Session T2-B on Source Water Protection, Abstract volume, pp 112–118

  • Vaché K, Eilers J, Santelmann M (2002) Water quality modeling of alternative agricultural scenarios in the US corn belt. JAWRA 38(3):773–787

    Google Scholar 

  • Van de Poll HW (1983) Geology of Prince Edward Island. PEI Dept. of Energy and Forestry, Energy and Minerals Branch, Charlottetown, PEI, 66 pp

  • Vinten A, Dunn S (2001) Assessing the effects of land use on temporal change in well water quality in a designated nitrate vulnerable zone. Sci Total Environ 265:253–268

    Article  Google Scholar 

  • World Health Organization (WHO) (2007) Nitrate and nitrite in drinking-water: background document for development of guidelines for drinking-water quality. WHO, Geneva

  • Wriedt G, Rode M (2006) Modelling nitrate transport and turnover in a lowland catchment system. J Hydrol 328(1–2):157–176

    Article  Google Scholar 

  • Young J, Somers GH, Raymond B (2003) Distribution and trends for nitrate in Prince Edward Island groundwater and surface waters. In: Proceedings of 2002 National Conference on Agricultural Nutrients and their Impact on Rural Water Quality, Waterloo, ON, April 2002, pp 313–319

Download references

Acknowledgements

The authors would like to thank R.E. Jackson, V. Cloutier, G.H. Somers and Y. Jiang for their constructive discussions. The constructive comments from T. Cui and an anonymous reviewer were also appreciated. This study was funded in part by the Geological Survey of Canada from its Groundwater Mapping Program (Groundwater Earth Observation and Thematic Research), by the Prince Edward Island Ministry of Environment, Energy and Forestry, and by a NSERC Discovery Grant to R.L. This is ESS contribution number 20100143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Paradis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paradis, D., Ballard, JM., Lefebvre, R. et al. Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture. Hydrogeol J 26, 511–531 (2018). https://doi.org/10.1007/s10040-017-1668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1668-z

Keywords

Navigation