Skip to main content
Log in

Groundwater-driven temperature changes at thermal springs in response to recent glaciation: Bormio hydrothermal system, Central Italian Alps

Changements de température liés aux eaux souterraines au droit des sources thermales en réponse à la glaciation récente: système hydrothermal de Bormio, Alpes Centrales italiennes

Cambios de temperatura del agua subterránea en los manantiales termales en respuesta a la glaciación reciente: sistema hidrotermal de Bormio, Alpes italianos centrales

针对意大利中部阿尔卑斯山脉博尔米奥水热系统近期的冰川作用所发生的地下水-驱使的温度变化

Mudanças de temperatura forçado pelas águas subterrâneas em nascentes termais em resposta a glaciação recente: sistema hidrotermal Bormio, Alpes Italianos Centrais

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Thermal springs are widespread in the European Alps, with hundreds of geothermal sites known and exploited. The thermal circulation and fluid outflows were examined in the area around Bormio (Central Italian Alps), where ten geothermal springs discharge from dolomite bodies located close to the regional Zebrù thrust. Water is heated in deep circulation systems and upwells vigorously at a temperature of about 40 °C. Heat and fluid transport is explored by steady and transient three-dimensional finite-element simulations taking into account the effect of the last glaciation, which in the study area was recognized to end around 11,000–12,000 years ago. The full regional model (ca. 700 km2) is discretized with a highly refined triangular finite-element planar grid. Numerical simulations suggest a reactivation of the system following the end of the Last Glacial Maximum. Results correctly simulate the observed discharge rate of ca. 2,400 L/min and the spring temperatures after ca. 13,000 years from deglaciation, and show a complete cooling of the aquifer within a period of approximately 50,000 years. Groundwater flow and temperature patterns suggest that thermal water flows through a deep system crossing both sedimentary and metamorphic lithotypes along a fracture network associated with the thrust system. This example gives insights into the influences of deep alpine structures and glaciations on groundwater circulation that control the development of many hydrothermal systems not necessarily associated with convective heat flow.

Résumé

Les sources thermales sont répandues dans les Alpes Européennes, avec des centaines de sites géothermaux connus et exploités. La circulation thermale et les émergences du fluide ont été étudiées dans la zone autour de Bormio (Alpes Centrales Italiennes), où dix sources géothermales drainent les corps dolomitiques proches de la zone de chevauchement régional du Zebrù. L’eau s’échauffe dans les systèmes de circulation profonds et émerge puissamment à une température proche de 40° C. Le transfert de chaleur et de fluide est étudié grâce à des simulations en régime permanent et transitoire par éléments finis tridimensionnels, prenant en compte l’effet de la dernière glaciation, dont il est admis que dans la zone d’étude elle se termine il y a environ 11,000–12,000 ans. Le modèle régional complet (environ 700 km2) est discrétisé par une grille plan à haute définition aux éléments finis triangulaires. Les simulations numériques suggèrent une réactivation du système survenant à la fin du Dernier Maximum Glaciaire. Les résultats simulent correctement le débit de décharge observé d’à peu près 2,400 L/min et la température des sources 13,000 années après la déglaciation, et montrent un refroidissement complet de l’aquifère pendant une période d’environ 50,000 ans. Les modèles de température et d’écoulement d’eau souterraine suggèrent que l’eau thermale s’écoule à travers un système profond recoupant à la fois des lithotypes sédimentaires et métamorphiques le long d’un réseau de fractures associé au système de chevauchement. Cet exemple apporte une connaissance poussée de l’influence des structures alpines profondes et des glaciations sur la circulation d’eau souterraine qui contrôle le développement de nombreux systèmes hydrothermaux, pas nécessairement associés à un flux de chaleur convectif.

Resumen

Los manantiales termales están muy extendidos en los Alpes europeos, con cientos de sitios geotérmicos conocidos y explotados. La circulación térmica y los flujos de fluidos se examinaron en la zona de Bormio (Alpes italianos centrales), donde diez manantiales geotermales descargan de cuerpos dolomíticos situados cerca del corrimiento regional de Zebrù. El agua se calienta en sistemas de circulación profunda y se eleva vigorosamente a una temperatura de aproximadamente 40 °C. El calor y el transporte de fluidos se exploran mediante simulaciones de elementos finitos tridimensionales, estables y transitorios, teniendo en cuenta el efecto de la última glaciación, que en el área de estudio fue reconocida como terminada hace alrededor de 11,000–12,000 años. El modelo regional completo (aproximadamente 700 km2) se discretiza con una cuadrícula planar triangular de elementos finitos altamente refinada. Las simulaciones numéricas sugieren una reactivación del sistema después del final del último máximo glacial. Los resultados simulan correctamente la tasa de descarga observada de aproximadamente 2,400 L/min y las temperaturas del manantial después de aproximadamente 13,000 años a partir de la desglaciación, y muestran un enfriamiento completo del acuífero en un período de aproximadamente 50,000 años. Los patrones de flujo y de temperatura del agua subterránea sugieren que el agua termal fluye a través de un sistema profundo que cruza los litotipos sedimentarios y metamórficos a lo largo de una red de fracturas asociada con el sistema de corrimiento. Este ejemplo da una idea de las influencias de estructuras alpinas profundas y de las glaciaciones en la circulación del agua subterránea que controla el desarrollo de muchos sistemas hidrotermales no necesariamente asociados con el flujo convectivo de calor.

摘要

热泉广泛分布于欧洲阿尔卑斯山脉,数百个热泉非常知名并且得到开发。在博尔米奥(意大利中部的阿尔卑斯山脉)周边地区对热循环和流体流出物进行了检查,在这里有十个热泉从位于区域的Zebrù冲断层附近的白云岩体向外排泄。水在深部循环系统中被加热,向外喷涌的温度达40 °C 。考虑到本地区大约11,000–12,000年前终结的最后的冰川作用,通过稳定和瞬时三维有限元模拟探索了热量和流体传输。完全区域模型(700 km2)离散成高度精细的三角有限元平面网格。数值模拟显示,在最后大冰期结束后系统有一个再活跃期。结果正确地模拟了观测到的大约2,400 L/min 的排泄量,及冰期结束后大约13,000年后的泉温度,显示出在大约50,000年的时间内含水层完全冷却。地下水流和温度模式显示,热水流经深部系统,穿过沿与冲断层相关的断裂网络的沉积岩类和变质岩类。这个实例使人们了解到深部阿尔卑斯山脉结构和冰川作用对对地下水循环的影响,而地下水循环控制着许多不一定和传递性热流相关的水热系统的发育。

Resumo

Nascentes termais são disseminadas nos Alpes Europeus, com centenas de localidades geotermais conhecidos e explorados. A circulação termal e o fluxo de saída foram examinados ao redor de Bormio (Alpes Italianos Centrais), onde dez nascentes geotermais de corpos de dolomita foram localizadas próximas ao thrust regional Zebrù. A água é aquecida em sistemas de circulação profunda e eleva-se vigorosamente a uma temperatura por volta de 40°C. O transporte térmico e de fluidos é explorado por simulações estáveis e de elementos finitos tridimensionais transientes levando em consideração o efeito da última glaciação, que na área de estudo reconhece-se ter terminado por volta 11,000–12,000 anos atrás. O modelo regional total (cerca de 700 km2) é discretizado a partir de uma malha plana triangular de elementos finitos altamente refinada. Simulações numéricas sugerem uma reativação do sistema seguindo o final do Último Máximo Glacial. Os resultados simularam corretamente a taxa de descarga por volta de 2,400 L/min uto e a temperatura da água depois de cerca de 13,000 anos da glaciação, e demonstra um resfriamento completo do aquífero no período de aproximadamente 50,000 anos. O fluxo de águas subterrâneas e os padrões de temperatura sugerem que o fluxo de águas termais permeia através de sistemas profundos atravessando ambos os tipos litológicos sedimentar e metamórfico pela rede de fraturas associado ao sistema de empurramento (thrust). Esse exemplo nos mostra entendimentos das influências das estruturas alpinas profundas e glaciações na circulação das águas subterrâneas que controlam o desenvolvimento de muitos sistemas hidrotermais não necessariamente associados com o fluxo de calor convectivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baietto A, Cadoppi P, Martinotti G, Perello P, Perrochet P, Vuataz FD (2008) Assessment of thermal circulations in strike-slip fault systems: the Terme di Valdieri case (Italian western Alps), Geol Soc London Spec Publ 299(1):317–339

    Article  Google Scholar 

  • Barton CA, Zoback MD, Moos D (1995a) Fluid flow along potentially active faults in crystalline rock. Geology 23(8):683–686

    Article  Google Scholar 

  • Benoit D (1999) Conceptual models of the Dixie Valley Nevada geothermal field. In: Transactions GRC, Geothermal Resources Council, Davis, CA, pp 505–512

  • Berra F (1994) Stratigrafia e paleogeografia del Triassico superiore delle falde Ortles e Quattervals (Austroalpino superiore) in Lombardia [Stratigraphy and paleogeography of the Upper Triassic of the Ortles and Quattervals nappe in Lombardy (upper Austroalpine)]. PhD Thesis, Università degli Studi - Milano, Italy

  • Bianchetti G, Roth P, Vuataz FD, Vergain J (1992) Deep groundwater circulation in the Alps: relations between water infiltration, induced seismicity and thermal springs: the case of Val d’Illiez, Wallis, Switzerland. Eclogae Geolog Helvet 85(2):291–305

    Google Scholar 

  • Bini A, Buoncristiani JF, Couterrand S, Ellwanger D, Felber M, Florineth D, Graf HR, Keller O, Kelly M, Schlüchter C, Schoeneich P (2009) Switzerland during the Last Glacial Maximal (LGM) 1:500,000. Bundesamt für Landestopografie, Wabern, Switzerland

  • Bodri B, Rybach L (1998) Influence of topographically driven convection on heat flow in the Swiss Alps: a model study. Tectonophysics 291(1):19–27

    Article  Google Scholar 

  • Boeckli L, Brenning A, Gruber S, Noetzli J (2011) A statistical permafrost distribution model for the European Alps. Cryosphere Discuss 5:1419–1459

    Article  Google Scholar 

  • Burns ER, Williams CF, Ingebritsen SE, Voss CI, Spane FA, DeAngelo J (2015) Understanding heat and groundwater flow through continental flood basalt provinces: insights gained from alternative models of permeability/depth relationships for the Columbia Plateau, USA. Geofluids 15(1–2):120–138

    Article  Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028

    Article  Google Scholar 

  • Chapron E (1999) Controles climatiques et sismo-tectonique de la sedimentation lacustre dans l’avant-pays alpin (Lac Du Bourget, Leman) durant la quaternaire recent [Climate and seismotectonic controls of the lake sedimentation in the Alpine foreland (Lake Bourget, Leman) during the recent Quaternary]. PhD Thesis, Université de Lille 1, Villeneuve-d’Ascq, France

  • Clark SP, Niblett ER (1956) Terrestrial heat flow in the Swiss Alps. Geophys J Int 7(4):176–195

    Article  Google Scholar 

  • Clerici A, Sfratato F (2008) Stima della conducibilità idraulica in ammassi rocciosi [Evaluation of hydraulic conductivity in rock formations]. Italian J Eng Geol Environ 1(Special Issue):67–76

  • Conti P (1994) La falda Austroalpina dell’Ortles e l’evoluzione tettonica delle Dolomiti dell’Engadina (Svizzera-Italia) (con 17 tavole) [The Austroalpine Ortles nappe and tectonic evolution of the Engadine dolomites (Switzerland-Italy) (17 tables)]. Mem Descr Carta Geol d’It 53:104

    Google Scholar 

  • Cruchet M (1985) Influence de la decompression sur le comportement hydrogeologique des massifs cristallins en basse Maurienne (Savoie, France) [Influence of decompression on the hydrogeological behavior of crystalline massifs in the lower Maurienne (Savoie, France)]. Géologie Alpine 61:65–73

  • Deming D (1993) Regional permeability estimates from investigations of coupled heat and groundwater flow, north slope of Alaska. J Geophys Res Solid Earth 98(B9):16271–16286

    Article  Google Scholar 

  • Dershowitz W, Lee G, Geier J, Foxford T, La Pointe P, Thomas A (1998) FracMan: interactive discrete fracture data analysis, geometric modeling, and exploration simulation. User documentation. Golder, Seattle, WA

    Google Scholar 

  • Diersch HJG (2001) FEFLOW reference manual. WASY, Berlin

    Google Scholar 

  • Diersch HJG (2009) Treatment of free surfaces in 2D and 3D groundwater modelling. WASY Software Feflow Finite element subsurface flow and transport simulation system, White Papers, vol 1. WASY, Berlin, pp 67–100

  • Dzikowski M, Josnin JY, Roche N (2016) Thermal influence of an alpine deep hydrothermal fault on the surrounding rocks. Groundwater 54(1):55–65

    Article  Google Scholar 

  • Eugster VH (1971) Beitrag zur Tektonik des südöstlichen Graubündens (Gebiet zwischen Landwasser und Ortler) [Contribution to the tectonic of south-east Graubünden (area between Landwasser and Ortler)]. Eclogae Geol Helv 64(1):133–147

    Google Scholar 

  • Evans DG, Raffensperger JP (1992) On the stream function for variable-density groundwater flow. Water Resour Res 28(8):2141–2145

    Article  Google Scholar 

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J Struct Geol 19(11):1393–1404

    Article  Google Scholar 

  • Foglio CARG 1:50,000 (2009) Cartografia geologica ufficiale Foglio CARG 1:50,000 no. 024, Bormio [Official Geological Cartography, Sheet CARG 1:50,000 no. 024, Bormio]. National Geological Service, Rome

  • Forster C, Smith L (1988) Groundwater flow systems in mountainous terrain: 2. controlling factors. Water Resour Res 24(7):1011–1023

    Article  Google Scholar 

  • Forster C, Smith L (1989) The influence of groundwater flow on thermal regimes in mountainous terrain: a model study. J Geophys Res 94(B7):9439–9451

    Article  Google Scholar 

  • Froitzheim N, Manatschal G (1996) Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol Soc Am Bull 108(9):1120–1133

    Article  Google Scholar 

  • Froitzheim N, Conti PT, Van Daalen M (1997) Late Cretaceous, synorogenic, low-angle normal faulting along the Schlinig fault (Switzerland, Italy, Austria) and its significance for the tectonics of the eastern Alps. Tectonophysics 280(3):267–293

    Article  Google Scholar 

  • Froitzheim N, Plasienka D, Schuster R (2008) Alpine tectonics of the Alps and western Carpathians. Geol Cent Eur 2:1141–1232

    Google Scholar 

  • Gallino S (2007) Hydrogéologie, géochimie et modélisation hydrodynamique-thermique d’un système thermo-minéral associé un contact structural alpin (Aix-les-Bains-Savoie) [Hydrogeology, geochemistry and hydrodynamic-thermal modeling of a thermo-mineral system associated with an alpine structural contact (Aix-les-Bains, Savoie)]. PhD Thesis, Université de Savoie, France, 338 pp

  • Gallino S, Josnin JY, Dzikowski M, Cornaton F, Gasquet D (2009) The influence of paleoclimatic events on the functioning of an alpine thermal system (France): the contribution of hydrodynamic–thermal modeling. Hydrogeol J 17(8):1887–1900

    Article  Google Scholar 

  • Giggenbach WF (1997) The origin and evolution of fluids in magmatic-hydrothermal systems. In: Geochemistry of hydrothermal ore deposits, vol 3. Wiley, Chichester, UK, pp 737–796

  • Gleeson T, Manning AH (2008) Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls. Water Resour Res 44(10), W10403

  • Guglielmin M, Cannone N, Dramis F (2001) Permafrost–glacial evolution during the Holocene in the Italian central Alps. Permafr Periglac Process 12(1):111–124

    Article  Google Scholar 

  • Hayba DO, Ingebritsen SE (1997) Multiphase groundwater flow near cooling plutons. J Geophys Res 102(12):235–252

    Google Scholar 

  • Henley RW, Adams DPM (1992) Strike-slip fault reactivation as a control on epithermal vein-style gold mineralization. Geology 20(5):443–446

    Article  Google Scholar 

  • Hickman S, Sibson R, Bruhn R (1995) Introduction to special section: mechanical involvement of fluids in faulting. J Geophys Res Solid Earth 100(B7):12831–12840

    Article  Google Scholar 

  • Hormes A, Ivy-Ochs S, Kubik PW, Ferreli L, Michetti AM (2008) 10Be exposure ages of a rock avalanche and a late glacial moraine in Alta Valtellina, Italian Alps. Quat Int 190(1):136–145

    Article  Google Scholar 

  • Ivy-Ochs S, Kerschner H, Reuther A, Maisch M, Sailer R, Schaefer J, Kubik PW, Synal HA, Schlüchter C (2006) The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic 10Be, 26Al, 36Cl, and 21Ne. Geol Soc Am Spec Pap 415:43–60

    Google Scholar 

  • Ivy-Ochs S, Kerschner H, Reuther A, Preusser F, Heine K, Maisch M, Kubik PW, Schlüchter C (2008) Chronology of the last glacial cycle in the European Alps. J Quat Sci 23(6–7):559–573

    Article  Google Scholar 

  • Jamier D (1975) Etude de la fissuration, de l’hydrologie et de la géochimie des eaux profondes des massifs de l’Arpille et du Mont Blanc [Study of cracking, hydrology and geochemistry of the deep waters of the Arpille and Mont Blanc massifs]. PhD Thesis, University of Lausanne, Switzerland

  • Kohl T, Signorelli S, Rybach L (2001) Three-dimensional (3-D) thermal investigation below high alpine topography. Phys Earth Planet Inter 126(3):195–210

    Article  Google Scholar 

  • Lebrouc V, Schwartz S, Baillet L, Jongmans D, Gamond JF (2013) Modeling permafrost extension in a rock slope since the Last Glacial Maximum: application to the large Séchilienne landslide (French Alps). Geomorphology 198:189–200

    Article  Google Scholar 

  • Lin G, Nunn JA, Deming D (2000) Thermal buffering of sedimentary basins by basement rocks: implications arising from numerical simulations. Pet Geosci 6(4):299–307

    Article  Google Scholar 

  • López DL, Smith L (1995) Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour Res 31(6):1489–1503

    Article  Google Scholar 

  • López DL, Smith L (1996) Fluid flow in fault zones: influence of hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer regime. Water Resour Res 32(10):3227–3235

    Article  Google Scholar 

  • Magri F, Bayer U, Maiwald U, Otto R, Thomsen C (2009) Impact of transition zones, variable fluid viscosity and anthropogenic activities on coupled fluid-transport processes in a shallow salt-dome environment. Geofluids 9(3):182–194

    Article  Google Scholar 

  • Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. J Hydrol 520:342–355

    Article  Google Scholar 

  • Maréchal JC (1998) Les circulations d’eau dans les massifs cristallins alpins et leurs relations avec les ouvrages souterrains [The water flows in the Alpine crystalline massifs and their relationship with the underground constructions]. PhD Thesis, no. 1769, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, pp 174–296

  • Maréchal JC, Perrochet P, Tacher L (1999) Long-term simulations of thermal and hydraulic characteristics in a mountain massif: the Mont Blanc case study, French and Italian Alps. Hydrogeol J 7(4):341–354

    Article  Google Scholar 

  • Medici F, Rybach L (1995) Geothermal map of Switzerland 1995: heat flow density. In: Matériaux pour la géologie de la Suisse. Geophysique no. 30, Commission de Geophysique, Zurich, Switzerland, pp 1–36

  • Mercer JW, Faust CR (1979) A review of numerical simulation of hydrothermal systems/Examen de la simulation numérique des systèmes hydrothermiques. Hydrol Sci J 24(3):335–343

    Article  Google Scholar 

  • Midas (2014) Midas GTS NX, Analysis reference. Midas Information Technology, Seongnam, South Korea

  • Minissale A (1991) Thermal springs in Italy: their relation to recent tectonics. Appl Geochem 6(2):201–212

    Article  Google Scholar 

  • Ofterdinger U S (2001) Ground water flow systems in the Rotondo granite, Central Alps (Switzerland), PhD Thesis, no. 14108, Naturwissenschaften ETH Zürich, pp 38–70

  • Parry WT (1998) Fault-fluid compositions from fluid-inclusion observations and solubilities of fracture-sealing minerals. Tectonophysics 290(1):1–26

    Article  Google Scholar 

  • Pastorelli S, Marini L, Hunziker JC (1999) Water chemistry and isotope composition of the Acquarossa thermal system, Ticino, Switzerland. Geothermics 28(1):75–93

    Article  Google Scholar 

  • Pena Reyes FA, Crosta GB, Frattini P, Basiricò S, Della Pergola R (2015) Hydrogeochemical overview and natural arsenic occurrence in groundwater from alpine springs (upper Valtellina, northern Italy). J Hydrol 529:1530–1549

    Article  Google Scholar 

  • Perello P, Marini L, Martinotti G, Hunziker JC (2001) The thermal circuits of the Argentera massif (western Alps, Italy): an example of low-enthalpy geothermal resources controlled by Neogene alpine tectonics. Eclogae Geol Helv 94(1):75–94

    Google Scholar 

  • Pozzi R (1965) Schema tettonico dell’alta Valtellina da Livigno al Gruppo dell’Ortles (con carta geologica e carta tettonica) [Tectonic pattern of the high Valtellina valley from Livigno to the Ortles (with geological and tectonic map)]. Eclogae Geol Helv 58(1):21–38

    Google Scholar 

  • Pozzi R, Bollettinari G, Clerici A (1990) Studio geomorfologico e geologico applicato dell’Alta Valtellina: alto bacino dell’Adda con chiusura a Tirano [Geomorphological and geological study applied to the Alta Valtellina: high Adda basin and closing at Tirano]. Azienda Energetica Municipale, Cremona, Italy

  • Raven KG (1977) Preliminary evaluation of structural and groundwater conditions in underground mines and excavations. Report of Activities, Geological Survey of Canada, Ottawa, pp 39–42

  • Rybach L, Eugster W, Griesser JC (1987) Die geothermischen Verhältnisse in der Nordschweiz [The geothermal conditions in northern Switzerland]. Eclogae Geol Helv 80(2):531–534

    Google Scholar 

  • Rybach L (1995) Thermal waters in deep Alpine tunnels. Geothermics 24(5):631–637

    Article  Google Scholar 

  • Robertson EC (1988) Thermal properties of rocks. US Geol Surv Open-File Rep 88-441

  • Scotti R, Brardinoni F, Crosta GB (2014) Post-LIA glacier changes along a latitudinal transect in the central Italian Alps. Cryosphere 8(6):2235–2252

    Article  Google Scholar 

  • Scotti R, Crosta GB, Villa A (2016) Destabilisation of creeping permafrost: The Plator Rock Glacier Case Study (Central Italian Alps). Permafrost Periglac Process 28:224–236

  • Scholz CH, Anders MH (1994) The permeability of faults. In: Hickman S, Sibson R, Bruhn R (ed) The mechanical involvement of fluids in faulting. US Geol Surv Open File Rep 94-228

  • Sibson RH (1987) Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 15(8):701–704

    Article  Google Scholar 

  • Sibson RH (1994) Crustal stress, faulting and fluid flow. Geol Soc London Spec Publ 78(1):69–84

    Article  Google Scholar 

  • Sibson RH (2001) Seismogenic framework for hydrothermal transport and ore deposition. Rev Econ Geol 14:25–50

    Google Scholar 

  • Smith DA (1980) Sealing and nonsealing faults in Louisiana Gulf Coast salt basin. AAPG Bull 64(2):145–172

    Google Scholar 

  • Smith L, Forster CB, Evans JP (1990) Interaction between fault zones, fluid flow and heat transfer at the basin scale. Selected Papers: Hydrogeology, IAH, Heise, Hanover, Germany

  • Sonney R (2010) Groundwater flow, heat and mass transport in geothermal systems of a Central Alpine Massif: the cases of Lavey-les-Bains, Saint-Gervais-les-Bains, and Val D’Illiez. PhD Thesis, University of Neuchâtel, Switzerland, pp 111–130

  • Sonney R, Vuataz FD (2007) BDFGeotherm: the database of geothermal fluids in Switzerland. Paper no. 272, Proc. European Geothermal Congress 2007, Unterhaching, Germany, 30 May–1 June 2007, 4 pp

  • Sonney R, Vuataz FD (2008) Properties of geothermal fluids in Switzerland: a new interactive database. Geothermics 37(5):496–509

    Article  Google Scholar 

  • Sonney R, Vuataz FD (2009) Numerical modelling of alpine deep flow systems: a management and prediction tool for an exploited geothermal reservoir (Lavey-les-Bains, Switzerland). Hydrogeol J 17(3):601–616

    Article  Google Scholar 

  • Swiss Federal Office of Environment (FOEN) (2017) Rom - Müstair 2617: current situation—discharge and water level. http://www.hydrodaten.admin.ch/en/2617.html. Accessed Jan 2017

  • Swisstopo (2005) Geologische Karte der Schweiz 1:500,000 [Geological map of Switzerland 1:500,000]. A collaborative effort of the Institut für Geologie, Universität Bern, and the Bundesamt für Wasser und Geologie. Swisstopo, Wabern, Switzerland

  • The Mathworks (1998) Guide MUs, vol 5. The Mathworks, Natick, MA, 333 pp

  • Thiébaud E (2008) Fonctionnement d’un système hydrothermal associé à un contact tectonique alpin (La Léchère, Savoie): apports de l’hydrogéologie, de la géochimie et de la modélisation hydrodynamique–thermique en vue de la gestion de la ressource [Characterization of a hydrothermal system associated to an alpine tectonic contact (La Léchère, Savoie): contributions of hydrogeology, geochemistry and hydrodynamic–thermic modeling to the water resource management]. PhD Thesis, Université de Savoie, France, pp 306–330

  • Thiébaud E, Gallino S, Dzikowski M, Gasquet D (2010) The influence of glaciations on the dynamics of mountain hydrothermal systems: numerical modeling of the la Léchère system (Savoie, France). Bull Soc Geol Fr 181(4):295–304

    Article  Google Scholar 

  • Toth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68(16):4795–4812

    Article  Google Scholar 

  • Volpi G, Riva F, Pena Reyes FA, Basiricò S, Penna D (2016) Geochemical characterization of the Bormio hydrothermal system (central Italian Alps). Rend Online Soc Geol It 41(2016):99–102. doi:10.3301/ROL.2016.103

    Google Scholar 

  • Vuataz FD (1982) Hydrogéologie, géochimie et géothermie des eaux thermales de Suisse et des régions alpines limitrophes [Hydrogeology, geochemistry and geothermal power of thermal waters in Switzerland and neighboring alpine regions]. In: Matériaux pour la géologie de la Suisse, Série Hydrologie 29, Commission de Geophysique, 174 pp

  • Vuataz FD (1983) Hydrology, geochemistry and geothermal aspects of the thermal waters from Switzerland and adjacent alpine regions. J Geothermal Res 19(1):73–97. doi: 10.1016/0377–0273(83)90125–7

  • WASY (ed) (2002) FEFLOW finite-element subsurface flow and transport simulation system. User’s manual, Release 5.2. WASY, Berlin

  • Welch LA, Allen DM (2012) Consistency of groundwater flow patterns in mountainous topography: implications for valley bottom water replenishment and for defining groundwater flow boundaries. Water Resour Res 48:W05526. doi:10.1029/2011WR010901

    Article  Google Scholar 

  • Welch LA, Allen DM (2014) Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow. Hydrogeol J 22(5):1003–1026

    Article  Google Scholar 

  • Yeamans F (1983) Basin and range geothermal hydrology: an empirical approach. Geothermal Resources Council Special Report no. 13, GRC, Davis, CA, pp 159–175

Download references

Acknowledgements

We acknowledge Dr. Pelucchi of Bagni di Bormio Spa for providing chemical, discharge and temperature data of the thermal springs. We thank Fredy Pena Reyes, Stefano Basiricò and Alberto Villa for their support in the construction of the hydrogeological model. We are very thankful to Steven Ingebritsen and two anonymous reviewers for their truly helpful comments, which greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Volpi.

Appendix

Appendix

FEFLOW solves the following set of governing equations in saturated porous media:

Fluid mass conservation:

$$ S\frac{\partial \varphi}{\partial \mathrm{t}}+\operatorname{div}\left(\mathbf{q}\right)=0 $$
(1)

Darcy’s law:

$$ \mathbf{q}=-\mathbf{K}\left(\operatorname{grad}\left(\varphi \right)+\frac{\rho_{\mathrm{f}}-{\rho}_{0\mathrm{f}}}{\rho_{0\mathrm{f}}}\mathbf{u}\right) $$
(2)

Energy balance equation:

$$ \frac{\partial }{\partial t}\left\{\left[{\varphi \rho}_{\mathrm{f}}{c}_{\mathrm{f}}+\left(1-\varphi \right){\rho}_{\mathrm{s}}{c}_{\mathrm{s}}\right] T\right\}+\operatorname{div}\left({\rho}_{\mathrm{f}}{c}_{\mathrm{f}} T\mathbf{q}\right)-\operatorname{div}\left[\uplambda \mathrm{grad}(T)\right]=0 $$
(3)

In the equation of fluid mass conservation (Eq.1 ), S is the specific storage, φ is the hydraulic head and q is the Darcy velocity defining the specific discharge of the fluid.

In the Darcy’s law (Eq. 2) K is the hydraulic conductivity tensor, u the gravitational unit vector and \( \frac{\rho_{\mathrm{f}}-{\rho}_{0\mathrm{f}}}{\rho_{0\mathrm{f}}}\mathbf{u} \) is the buoyancy force induced by density variation (ρ 0f is the reference value of the fluid density ρ f).

In the energy balance equation for the fluid and the porous medium (Eq. 3), c f and c s denote the heat capacity of the fluid and the solid, respectively, T is the temperature and λ is the thermal conductivity of the saturated porous medium.

The flow and transport equations (Eqs. 2 and 3) are non-linear and strongly coupled since temperature controls the hydraulic conductivity tensor K, the fluid density and dynamic viscosity, as expressed by the following constitutive and phenomenological relation:

$$ \mathbf{K}=\frac{\mathbf{k}{\boldsymbol{\rho}}_{0\mathrm{f}} g}{{\boldsymbol{\mu}}_{\mathrm{f}}\left( C, T\right)} $$
(4)

In Eq. 4, K is the hydraulic conductivity tensor, k is the permeability tensor, g is the gravitational acceleration and μ f(C, T) takes into account the fluid viscosity effects due to temperature and concentration variations.

The EOS for the fluid density is written as:

$$ {\rho}_{\mathrm{f}}={\rho}_{0\mathrm{f}}\left[1-\overline{\beta}\left( T, p\right)\left( T-{T}_0\right)+\overline{\gamma}\left( T, p\right)\left( p-{p}_0\right)\right] $$
(5)

The fluid density in the single liquid phase is expressed in terms of reference values for density, temperature and pressure (ρ 0, T 0 and p 0). \( \overline{\beta}\left( T, p\right) \)is the coefficient of thermal expansion and\( \kern0.5em \overline{\gamma}\left( T, p\right) \) is the coefficient of compressibility. The polynomial expressions used to fit the coefficients in a wide range of temperature (0 ≤ T ≤ 350 °C) and pressure (p sat ≤ p ≤ 100 MPa) are given in Magri et al. (2009).

The fluid viscosity is calculated with the following function as shown in WASY (2002).

$$ \frac{\mu (T)}{\mu \left({T}_0\right)}=\frac{1+0.70603\times {\varsigma}_{{\mathrm{T}}_0}-0.04832\times {\varsigma}_{{\mathrm{T}}_0}^3}{1+0.70603\times \varsigma -0.04823\times {\varsigma}^3};\varsigma =\frac{T-150}{100};{\varsigma}_{{\mathrm{T}}_0}=\frac{T_0-150}{100} $$
(6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpi, G., Magri, F., Frattini, P. et al. Groundwater-driven temperature changes at thermal springs in response to recent glaciation: Bormio hydrothermal system, Central Italian Alps. Hydrogeol J 25, 1967–1984 (2017). https://doi.org/10.1007/s10040-017-1600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1600-6

Keywords

Navigation