Skip to main content
Log in

Chemical parameters as natural tracers in hydrogeology: a case study of Louros karst system, Greece

Chemische Parameter als natürliche Tracer in Hydrogeologie: eine Fallstudie des Louros Karstsystems, Griechenland

Paramètres chimiques comme traceurs naturels hydrogéologiques: cas d’étude du système karstique de Louros, Grèce

Los parámetros químicos como trazadores naturales en hidrogeología: un caso de estudio del sistema kárstico de Louros, Grecia

化学参数在水文地质学中作为天然示踪剂:希腊Louros岩溶系统研究案例

Chemische parameters als natuurlijke tracers in geohydrologie: een case studie in het Louros karst systeem, Griekenland

Oι χημικές παράμετρoι ως φυσικoί ιχνηθέτες στην υδρoγεωλoγία: εφαρμoγή στo καρστικό σύστημα τoυ Λoύρoυ, Eλλάδα

Parametri chimici quali traccianti naturali in idrogeologia: il caso di studio del sistema carsico di Louros, Grecia

Parâmetros químicos como traçadores naturais em hidrogeologia: estudo de caso do sistema cárstico Louros, Grécia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Louros Basin hosts one of the most important karst systems of Epirus Prefecture (Greece) and plays a key role in supplying three counties with drinking water. Aiming to investigate the origin of groundwater and its flow patterns, a multi-tracer approach was used to describe and evaluate the hydrogeology of the system. Therefore, 271 surface water and groundwater samples were collected and analyzed for physicochemical parameters, major ions, and trace and rare earth elements, as well as stable isotopes (δ18O and δ2H). These data provided meaningful tracing of the water origin, water–rock interaction processes, and relationships among the aquifers. In particular, the elaboration of the major ions supported by the distribution of rare earth elements indicated that there are three aquifers located at different levels hosted in the Senonian and Pantokrator limestone formations. These aquifers are hydraulically interconnected by a cascade and constitute the Louros karst system which is drained by the homonymous river. Hydrochemical and isotopic data revealed that the Louros karst system is isolated from the adjacent northern Ioannina Basin and it is being recharged by precipitation. Higher groundwater salinity, where present, is mainly associated with increased water–rock interaction due to longer and deeper hydrologic flow, favoring the dissolution of evaporitic, carbonate and phosphate minerals.

Zusammenfassung

Das Louros-Becken beherbergt eines der wichtigsten Karstsysteme der Epirus-Präfektur (Griechenland) und spielt eine wichtige Rolle bei der Versorgung von drei Landkreisen mit Trinkwasser. Es wurde ein Multi-Tracer-Ansatz verwendet, um die Hydrogeologie des Systems zu beschreiben und zu bewerten. Dafür wurden 271 Oberflächenwasser- und Grundwasserproben gesammelt und auf physikochemische Parameter, Hauptionen und Spuren- und Seltenerden-Elemente sowie stabile Isotope (δ18O and δ2H) analysiert. Diese Daten liefern bedeutende Informationen bezüglich der Wasserherkunft, der Bedeutung von Wasser–Gesteins-Interaktionsprozessen und der Beziehung zwischen den Grundwasserleitern. Insbesondere zeigen die Konzentrationen der Hauptionen und der Seltenerdenelemente an, dass es drei Aquifere gibt, die sich in verschiedenen Tiefen in den Senonian und Pantokrator-Kalksteinformationen befinden. Diese Aquifere sind hydraulisch durch eine Kaskade miteinander verbunden und bilden das Louros-Karstsystem, das durch den gleichnamigen Fluss entwässert wird. Hydrochemische und isotopische Daten zeigen, dass das Louros-Karst-System vom angrenzenden nördlichen Ioannina-Becken isoliert ist und nur durch Regenwasser wieder aufgeladen wird. Wasser–Gesteins-Wechselwirkungen treten bevorzugt in ausgedehnteren und tieferen hydrologischen Strömungen auf. Sie gehen mit einer Auflösung von Evaporit-, Carbonat- und Phosphatmineralien einher und führen letztlich zu einem höheren Salzgehalt der Wässer.

Résumé

Le bassin de Louros comporte un des plus importants systèmes karstiques de la région d’Epire (Grèce) et joue un rôle important dans l’alimentation en eau potable de trois comtés. Dans le but de rechercher l’origine des eaux souterraines et ses modalités d’écoulements, une approche multi-traceurs a été utilisée pour décrire et évaluer le système hydrogéologique. Ainsi, 271 échantillons d’eau de surface et souterraine ont été collectés et l’analyse des paramètres physico-chimiques, des ions dissous majeurs et traces, des terres rares ainsi que des isotopes stables de la molécule d’eau (δ18O and δ2H) a été réalisée. Ces données fournissent des informations significatives concernant le traçage de l’origine de l’eau, des processus d’interaction eau–roche, et des relations entre aquifères. Plus particulièrement, l’analyse des ions majeurs, appuyée par la distribution des terres rares montre l’existence de trois aquifères localisés à différents niveaux au sein des formations calcaires du Sénonien et Pantokrator. Ces aquifères sont hydrauliquement interconnectés en cascade et constituent le système karstique de Louros qui est drainé par la rivière du même nom. Les données hydrochimiques et isotopiques montrent que le système karstique de Louros est isolé du bassin adjacent Ionnina situé au Nord et est rechargé par les pluies. La forte salinité des eaux souterraines, lorsque présente, est associée principalement à une augmentation des interactions eau–roche du fait de flux hydrologiques plus longs et en profondeur, favorisant la dissolution des roches évaporitiques et des minéraux carbonatés et phosphatés.

Resumen

La cuenca del Louros alberga uno de los sistemas kársticos más importantes de Epirus Prefecture (Grecia) y desempeña un papel clave en el suministro de agua potable a tres condados. Con el objetivo de investigar el origen de las aguas subterráneas y sus patrones de flujo, se utilizó un enfoque multi-trazador para describir y evaluar la situación hidrogeológica del sistema. Por lo tanto, se recogieron 271 muestras de agua superficial y subterránea y se analizaron los parámetros físico-químicos, iones mayoritarios y traza y elementos de tierras raras, así como los isótopos estables (δ18O and δ2H). Estos datos proporcionan un significativo seguimiento del origen del agua, de los procesos de la interacción agua–roca, y de las relaciones entre los acuíferos. En particular, la elaboración de los iones principales apoyados por la distribución de los elementos de tierras raras indica que hay tres acuíferos situados en diferentes niveles alojados en las formaciones de calizas Senonian y Pantokrator. Estos acuíferos están hidráulicamente conectados entre sí por una cascada y constituyen el sistema kárstico de Louros que está drenado por el río homónimo. Los datos hidroquímicos e isotópicos revelaron que el sistema kárstico de Louros está aislado de la cuenca Ioannina adyacente hacia el norte y que se recarga por precipitación. Una mayor salinidad de las aguas subterráneas, cuando está presente, se asocia principalmente con el aumento de la interacción agua–roca debido a un prolongado y profundo flujo hidrológico, lo que favorece la disolución de evaporitas, carbonatos y minerales de fosfato.

摘要

Louros流域是(希腊)伊皮鲁斯地区最重要的岩溶系统之一,在向三个郡供应饮用水中发挥着关键作用。为了调查地下水的起源及其流动模式,采用多示踪剂方法描述和评估了系统的水文地质状况。因此,收集了271个地表水样和地下水样并分析了其物理化学参数、主要离子、微量和稀土元素以及稳定同位素((δ18O 和 δ2H)。这些资料提供了水起源有意义的踪迹、水-岩相互作用过程及含水层之间的关系。尤其是由稀土元素分布支持的主要离子方面的详细阐述表明,在Senonian 和 Pantokrator石灰岩地层不同的深度中存在着三个含水层。这些含水层通过一个小瀑布水力上相互连通,构成了Louros系统,与此系统同名的河流流经本系统。水化学和同位素资料揭示,Louros岩溶系统与毗邻的Ioannina流域北部隔开,由降水补给。有些地区,较高的地下水盐度主要与增加的水-岩相互作用相关,而增加的水-岩相互作用是由较长和较深水文水流造成的,它有助于蒸发岩、碳酸盐和磷酸盐矿物的溶解。

Samenvatting

Het Louros Stroomgebied herbergt één van de belangrijkste karst systemen van Epirus Prefectuur (Griekenland) en speelt een belangrijke rol bij het leveren van drinkwater aan drie provincies. Om de oorsprong van het grondwater en de stromingspatronen te onderzoeken is voor de beschrijving en de evaluatie van de hydrogeologie van het systeem een multi-tracer aanpak toegepast. Daartoe zijn 271 oppervlaktewater- en grondwatermonsters verzameld en geanalyseerd op fysico-chemische parameters, belangrijkste ionen, sporenelementen, zeldzame aarde en stabiele isotopen (δ18O en δ2H).

Met deze gegevens is zinvolle informatie opgespoord over de oorsprong van het water, interactieprocessen tussen water en gesteenten en relaties tussen de waterhoudende lagen. Met name de uitwerking van de belangrijkste ionen, ondersteund door verspreiding van zeldzame aardelementen, toont aan dat er drie waterhoudende lagen aanwezig zijn op verschillende niveaus, welke door de Senonien en Pantokrator kalksteenformaties worden behelsd. Deze waterhoudende lagen zijn hydraulisch met elkaar verbonden door een cascade en vormen het Louros karst systeem, waarvan het water wordt afgevoerd door de gelijknamige rivier. Uit hydrochemische en isotopische gegevens blijkt dat het Louros karst systeem is geisoleerd van het aangrenzende noordelijke Ioannina Stroomgebied en wordt aangevuld door neerslag. Een hoger zoutgehalte van het grondwater wordt, indien aanwezig, vooral geassocieerd met een verhoogde water-gesteente interactie als gevolg van langere en diepere hydrologische stromen, die de ontbinding van evaporiet, carbonaat en fosfaat mineralen bevorderen.

Περίληψη

H λεκάνη απoρρoής τoυ Λoύρoυ φιλoξενεί ένα από τα πιo σημαντικά καρστικά συστήματα της Hπείρoυ, τo oπoίo διαδραματίζει καθoριστικό ρόλo στoν τρoφoδoσία τριών νoμών με πόσιμo νερό. Mε στόχo την διερεύνηση της πρoέλευσης και της κίνησης των υπόγειων υδάτων, χρησιμoπoιήθηκε μια πρoσέγγιση πoλλαπλών ιχνηθετών ώστε να περιγραφεί και να αξιoλoγηθεί η υδρoγεωλoγία τoυ συστήματoς. Ως εκ τoύτoυ, 271 δείγματα επιφανειακών και υπόγειων υδάτων συλλέχθηκαν και αναλύθηκαν ως πρoς τις φυσικoχημικές παραμέτρoυς, τα κύρια στoιχεία, τα ιχνoστoιχεία, τις σπάνιες γαίες, καθώς και τα σταθερά ισότoπα (δ18O και δ2H). Tα δεδoμένα αυτά συμβάλλoυν oυσιαστικά στην ανίχνευση της πρoέλευσης τoυ νερoύ, τις διαδικασίες αλληλεπίδρασης νερoύ-πετρώματoς, και τις υδραυλικές σχέσεις μεταξύ των υδρoφόρων. Eιδικότερα, η αξιoλόγηση των συγκεντρώσεων των κύριων στoιχείων, σε συνδυασμό με την κατανoμή των σπάνιων γαιών, κατέδειξε την ύπαρξη τριών υδρoφόρων oριζόντων, oι oπoίoι φιλoξενoύνται στoυς ασβεστόλιθoυς τoυ Σενωνίoυ και τoυ Παντoκράτoρα. Oι υδρoφόρoι αυτoί συνδέoνται μεταξύ τoυς υδραυλικά και διαρθρώνoνται κλιμακωτά σε τρία επίπεδα, τα oπoία απoτελoύν τo καρστικό σύστημα Λoύρoυ πoυ απoστραγγίζεται από τoν oμώνυμo πoταμό. Tα υδρoχημικά και ισoτoπικά δεδoμένα υπέδειξαν ότι τo καρστικό αυτό σύστημα είναι απoμoνωμένo από την παρακείμενη πρoς τo βoρρά κλειστή λεκάνη των Iωαννίνων και τρoφoδoτείται από τo νερό της κατείσδυσης. H υψηλότερη αλατότητα των υπoγείων υδάτων, όπoυ υπάρχει, συνδέεται κυρίως με την αυξημένη αλληλεπίδραση νερoύ-πετρώματoς λόγω τoυ μεγαλύτερoυ χρόνoυ παραμoνής αλλά και την βαθύτερη κίνηση τoυ νερoύ, πoυ ευνoεί τη διάλυση εβαπoριτικών, ανθρακικών και φωσφoρικών oρυκτών.

Riassunto

Il bacino del Louros ospita uno dei sistemi carsici più importanti della Prefettura dell’Epiro (Grecia) e svolge un ruolo chiave nel rifornimento di acqua potabile in tre province. Allo scopo di investigare l’origine dell’acqua sotterranea e di costruire un modello di deflusso, è stato preso in considerazione un approccio che tiene conto di traccianti multipli per la definizione dell’idrogeologia del sistema. A questo scopo sono stati raccolti 271 campioni di acque sotterranee ed analizzati per i parametri chimico-fisici, gli ioni maggiori, gli elementi in traccia comprese le terre rare e gli isotopi stabili (δ18O e δ2H). Questi dati hanno consentito di tracciare l’origine dell’acqua, i processi di interazione acqua-roccia e le relazioni tra gli acquiferi. In particolare, l’elaborazione dei dati sugli elementi maggiori, supportata dai dati sulle terre rare, ha messo in luce la presenza di tre acquiferi disposti a quote differenti insediati nelle formazioni carbonatiche denominate Senonian e Pantokrator. Questi acquiferi sono interconnessi a cascata e costituiscono il sistema carsico del Louros drenato dal fiume omonimo. I dati idrochimici ed isotopici hanno rivelato che questo sistema carsico è isolato dall’adiacente Bacino di Ioannina a nord essendo ricaricato esclusivamente dalle precipitazioni atmosferiche. Ove presente, una salinità più elevata è associata prevalentemente ad interazioni acqua-roccia più spinte a causa di circuiti idrologici più lunghi e profondi che favoriscono la dissoluzione di minerali evaporitici, carbonatici e fosfatici.

Resumo

A Bacia Louros é um dos mais importantes sistemas cársticos da Prefeitura de Epiro (Grécia) e desempenha um importante papel no abastecimento de três condados com água potável. Visando investigar a origem das águas subterrâneas e seus padrões de fluxo, uma abordagem multitraçadores foi utilizada para descrever e avaliar o sistema hidrogeológico. Para isso, 271 amostras de águas superficiais e subterrâneas foram coletadas e analisadas quanto a parâmetros físico-químicos, íons principais, elementos traços e terras raras, bem como os isótopos estáveis (δ18O e δ2H). Estes dados fornecem um rastreamento significativo da origem da água, do processo de interação água-rocha, e da relação entre os aquíferos. Em particular, a composição dos íons principais suportados pela distribuição de terras raras indicam que há três aquíferos hospedados em diferentes níveis, nas formações calcárias Senonian e Pantokrator. Esses aquíferos são hidraulicamente interconectados por uma cascata e constituem o sistema cárstico Louros, que é drenado pelo rio homônimo. Dados hidroquímicos e isotópicos revelam que o sistema cárstico de Louros é isolado ao norte pela Bacia Joanina adjacente, na qual é recarregada pela precipitação. Águas subterrâneas altamente salinizadas, quando presentes, são comumente associadas ao aumento da interação água-rocha devido a um mais longo e profundo fluxo hidrológico, favorecendo a dissolução de evaporitos, carbonatos e fosfatos minerais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubouin J (1959) Contribution à l’étude géologique de la Grèce septentrionale: les confins de l’Epire et de la Thessalie, Thèse [Contribution to the Geological Survey of Northern Greece: the borders of Epirus and Thessaly, PhD Thesis]. Univ. Paris, 1958 Annal Géol Pays Helleniques Athènes 10:1–525

  • Batiot C, Liñán C, Andreo B, Emblanch C, Carrasco F, Blavoux B (2003) Use of total organic carbon (TOC) as tracer of diffuse infiltration in a dolomitic karstic system: the Nerja Cave (Andalusia, southern Spain). Geophys Res Lett 30(2179):22. doi:10.1029/2003GL018546

    Google Scholar 

  • Bouchaou L, Michelot JL, Vengosh A, Hsissou Y, Qurtobi M, Gaye CB, Bullen TD, Zuppi GM (2008) Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco. J Hydrol 352(3–4):267–287. doi:10.1016/j.jhydrol.2008.01.022

    Article  Google Scholar 

  • Caetano Bicalho C, Batiot-Guilhe C, Seidel JL, Van Exter S, Jourde H (2012) Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer. J Hydrol 450–451:206–218. doi:10.1016/j.jhydrol.2012.04.059

    Article  Google Scholar 

  • Cook PG, Herczeg AL (2000) Environmental tracers in subsurface hydrology. Kluwer, Boston, 529 pp

    Book  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. doi:10.1126/science.133.3465.1702

    Article  Google Scholar 

  • D’Alessandro W, Katsanou K, Lambrakis N, Bellomo S, Brusca L, Liotta M (2013) Chemical and isotopic characterisation of bulk deposition in the Louros Basin (Epirus, Greece). Atmos Res 132–133:399–410. doi:10.1016/j.atmosres.2013.07.007

    Article  Google Scholar 

  • Daniele L, Vallejos A, Corbella M, Molina L, Pulido-Bosch A (2013) Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: the case of Aguadulce (SE Spain). Appl Geochem 29:43–54. doi:10.1016/j.apgeochem.2012.11.011

    Article  Google Scholar 

  • De Vos W, Tarvainen T, Salminen R, Reeder S, De Vivo B, Demetriades A, Pirc S, Batista MJ, Marsina K, Ottesen RT, O’Connor PJ, Bidovec M, Lima A, Siewers U, Smith B, Taylor H, Shaw R, Salpeteur I, Gregorauskiene V, Halamic J, Slaninka I, Lax K, Gravesen P, Birke M, Breward N, Ander EL, Jordan G, Duris M, Klein P, Locutura J, Bellan A, Pasieczna A, Lis J, Mazreku A, Gilucis A, Heitzmann P, Klaver G, Petersell V (2006) Geochemical atlas of Europe, part 2: interpretation of geochemical maps, additional tables, figures, maps, and related publications. Geological Survey of Finland, Espoo, Finland, 692 pp

  • Dincer T, Payne BR, Florkowski T, Martinec J, Tongiorgi E (1970) Snowmelt runoff from measurements of tritium and oxygen-18. Water Resour Res 6(1):110–124. doi:10.1029/WR006i001p00110

    Article  Google Scholar 

  • Drew, D. (1999) Introduction, In: Drew, D. & Hötzl, H (eds) Karst Hydrogeology and Human Activities. Impacts, Consequences and Implications. A.A. Balkema, Rotterdam, pp 3–12

  • Edmunds WM, Droubi A (1998) Groundwater salinity and environmental change. Isotope techniques in the study of past and current environmental changes in the hydrosphere and atmosphere. IAEA, Vienna, pp 503–518

  • Emblanch C, Blavoux B, Puig JM, Couren M (1998) Le marquage de la zone non saturée du karst à l’aide du carbone 13 [The use of carbon 13 as a tracer of the karst unsaturated zone]. C R Acad Sci Ser IIA Earth Planet Sci 326(5):327–332. doi:10.1016/S1251-8050(98)80302-9

    Google Scholar 

  • Fontes J-C (1980) Environmental isotopes in groundwater hydrology. In: Fritz P, Fontes J-C (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 75–140

    Google Scholar 

  • Fritz P, Cherry JA, Weyer KU, Sklash MG (1976) Runoff analyses using environmental isotopes and major ions. In: Interpretation of environmental isotope and hydrogeochemical data in groundwater hydrology. IAEA, Vienna, pp 111–130

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of the atmospheric water in the Mediterranean Sea area. J Geophys Res 75:3039–3048. doi:10.1029/JC075i015p03039

    Article  Google Scholar 

  • Gat JR, Gonfiantini R (1981) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Technical report series no. 210, International Atomic Energy Agency, Vienna, 337 pp

  • Hatziyannis G (2011) The geothermal energy of Epirus: fields and perspectives exploitation. EGE Workshop “The geological research as a lever of development of Epirus”, July 2011, Ioannina, Greece

  • Hébrard O, Pistre OS, Cheynet N, Dazy J, Batiot-Guilhe C, Seidel J-L (2006) Origine des eaux des émergences karstiques chlorurées du Languedoc-Roussillon [Origin of the Languedoc-Roussillon’s chloride rich karst spring waters]. C R Geosci 338(10):703–710. doi:10.1016/j.crte.2006.04.018

    Article  Google Scholar 

  • Hötzl H (1998) Karst groundwater. In: Käss W (ed) Tracing technique in geohydrology. Balkema, Rotterdam, The Netherlands, pp 398–426

    Google Scholar 

  • IGRS-IFP (1966) Étude Géologique de l’Épire [Geological study of Epirus]. Ministère de l’Industrie, Direction Générale des Mines, Athens, 306 pp

  • Käss W (1998) Tracing technique in geohydrology. Balkema, Rotterdam, The Netherlands, 600 pp

    Google Scholar 

  • Karakitsios V, Tsaila-Monopolis S (1988) Donnees nouvelles sur les niveaux superieurs (Lias inferieur-moyen) des calcaires de Pantokrator (zone ionienne moyenne, Epire, Grece continental): description des calcaires de Louros [New data on upper layers of Pantokrator limestones: description of the Louros limestones]. Rev Micropaleontol 31:49–55

    Google Scholar 

  • Katsanou K (2012) Environmental hydrogeological study of Louros watershed, Epirus, Greece. PhD Thesis, University of Patras, Greece, 320 pp

  • Katsanou K, Lambrakis N, Tayfur G, Baba A (2015) Describing the Karst evolution by the exploitation of hydrologic time-series data. Water Resour Manag 29:3131. doi:10.1007/s11269-015-0987-x

    Article  Google Scholar 

  • Katsikatsios G (1992) The geology of Greece. University of Patras, Greece, 451 pp

    Google Scholar 

  • Kovács A (2003) Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modeling approach. PhD Thesis, Université de Neuchâtel, Switzerland

  • Leontiadis I, Smyrniotis Ch (1986) Isotope hydrology study of the Louros River plain area. In: Morris A, Paraskevopoulou P (eds) Proceedings of 5th International Symposium on Underground Water Tracing, Athens, September 1986, pp 75–90

  • Loye-Pilot M-D, Jusserand C (1990) Chemical and isotopic hydrograph separation for a Mediterranean torrent flood: a critical view (in French). Rev Sci de l’Eau 3(2):211–231

  • Maloszewski P (2006) Estimation of transport and system parameters in a karst aquifer using artificial and environmental tracer data. Geophysical Research Abstracts 8:02156

  • Maloszewski P, Stichler W, Zuber A, Rank D (2002) Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O/3H isotopes. J Hydrol 256(1–2):48–59. doi:10.1016/S0022-1694(01)00526-1

    Article  Google Scholar 

  • Marc V, Didon-Lescot J-F, Michael C (2001) Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge. J Hydrol 247(3):215–229. doi:10.1016/S0022-1694(01)00386-9

    Article  Google Scholar 

  • Martinec J, Siegenthaler H, Oescheger H, Tongiorgi E (1974) New insight into the runoff mechanism by environmental isotopes. Proc Symp Isot Tech Groundw Hydrol IAEA Vienna 1:129–143

    Google Scholar 

  • Nativ R, Günay G, Hötzl H, Reichert B, Solomon DK, Tezcan L (1999) Separation of groundwater-flow components in a karstified aquifer using environmental tracers. Appl Geochem 14:1001–1014

    Article  Google Scholar 

  • Négrel N, Petelet-Giraud E (2005) Strontium isotopes as tracers of groundwater-induced floods: the Somme case study (France). J Hydrol 305(1–4):99–119. doi:10.1016/S0883-2927(99)00012-8

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. US Geological Survey Techniques and Methods, book 6, chap A43, USGS, Reston, VA, 497 pp. http://pubs.usgs.gov/tm/06/a43/. Accessed November 2016

  • Payne BR (1983) Groundwater salinization. Guidebook on Nuclear techniques in hydrology. Technical reports series 91, IAEA, Vienna, pp 351–357

  • Pearce AJ, Stewart MK, Sklash MG (1986) Storm runoff generation in humid catchments, I: where does the water come from? Water Resour Res 22:1263–1272. doi:10.1029/WR022i008p01263

    Article  Google Scholar 

  • Piper D (1974) Rare earth elements in the sedimentary cycle: a summary. Chem Geol 14:285–304

    Article  Google Scholar 

  • Plummer LN, Busenberg E, Böhlke JK, Nelms DL, Michel RL, Schlosser P (2001) Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chem Geol 179(1–4):93–111. doi:10.1016/S0009-2541(01)00317-5

    Article  Google Scholar 

  • Pulido-Leboeuf P, Pulido-Bosch A, Calvache ML, Vallejos Á, Andreu JM (2003) Strontium, SO4 2−/Cl and Mg2+/Ca2+ ratios as tracers for the evolution of seawater into coastal aquifers: the example of Castell de Ferro aquifer (SE Spain). C R Geosci 335(14):1039–1048. doi:10.1016/j.crte.2003.08.004

    Article  Google Scholar 

  • Rigakis N, Karakitsios V (1998) The source rock horizons of the Ionian Basin (NW Greece). Mar Pet Geol 15:593–617. doi:10.1016/S0264-8172(98)00032-4

    Article  Google Scholar 

  • Rodhe A (1981) Spring flood, melt water or groundwater. Nord Hydrol 12:21–30

    Google Scholar 

  • Sholkovitz ER (1988) Rare earth elements in the sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea: reinterpretation of terrigenous input patterns to the Oceans. Am J Sci 288:236–281. doi:10.2475/ajs.288.3.236

    Article  Google Scholar 

  • Sklash MG, Farvolden RN (1979) The role of groundwater in storm runoff. J Hydrol 43:43–65. doi:10.1016/0022-1694(79)90164-1

    Article  Google Scholar 

  • Skourtsis-Coroneou V, Manacos C (1995) New micropaleontological data on the age of the onset of the deposition of the Vigla Limestones Formation. Spec Publ Geol Soc Greece 4:269–274

    Google Scholar 

  • Skourtsis-Coroneou V, Solakius N (1999) Calpionellid zonation at the Jurassic/Cretaceous boundary within the Vigla Limestone Formation (Ionian Zone, Western Greece) and carbon isotope analysis. Cretac Res 20:583–595. doi:10.1006/cres.1999.0168

    Article  Google Scholar 

  • Skourtsis-Coroneou V, Solakius N, Constantinidis I (1995) Cretaceous stratigraphy of the Ionian Zone, Hellenides, western Greece. Cretac Res 16:539–558. doi:10.1006/cres.1995.1035

    Article  Google Scholar 

  • Smart C (1988) Artificial tracer techniques for the determination of the structure of conduit aquifers. Ground Water 26(4):445–453. doi:10.1111/j.1745-6584.1988.tb00411.x

    Article  Google Scholar 

  • Smyrniotis Ch (1991) Preliminary report of Louros karst system hydrogeological study. Technical report, Institute of Geological and Mineral Research, Athens, 39 pp

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, London

    Google Scholar 

  • Terwey JL (1984) Isotopes in groundwater hydrology. Proceedings of ‘Challenges in African Hydrology and Water Resources’, Harare, July 1984, IAHS Publ. 144, IAHS, Wallingford, UK

  • US EPA (1976) Quality criteria for water. US EPA, Washington, DC

    Google Scholar 

  • Vriniotis D, Papadopoulou K (2004) The role of Louros and Arachtos rivers in the development of sediments of the Arta’s plain with the contribution of geochemical parameters. Bull Geol Soc Greece XXXVI:150–157

    Google Scholar 

  • Yurtsever Y (1997) Role and contribution of environmental tracers for study of sources and processes of groundwater salinization. In: Proceedings of the Rabat symposium, Hydrochemistry, April 1997, IAHS Publ. 244, IAHS, Wallingford, UK, pp 3–12

Download references

Acknowledgements

The authors gratefully acknowledge the constructive criticisms and helpful suggestions provided by the editor and the reviewers of the initial version of this paper, which are reflected in the present version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Katsanou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsanou, K., Lambrakis, N., D’Alessandro, W. et al. Chemical parameters as natural tracers in hydrogeology: a case study of Louros karst system, Greece. Hydrogeol J 25, 487–499 (2017). https://doi.org/10.1007/s10040-016-1492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1492-x

Keywords

Navigation