Skip to main content

Advertisement

Log in

Development of unconfined conditions in multi-aquifer flow systems: a case study in the Rajshahi Barind, Bangladesh

Développement de conditions libres dans des systèmes d’écoulement multi-aquifères: un cas d’étude dans le Rajshahi Barind, Bengladesh

Desarrollo de condiciones no confinadas en sistemas de flujo de acuíferos múltiples: un estudio de caso en el Rajshahi Barind, Bangladesh

多重含水层水流系统中非承压条件的发育:孟加拉Rajshahi Barind地区的研究实例

Desenvolvimento de condições não confinadas em sistemas de escoamento multiaquíferos: Um estudo de caso em Rajshahi Barind, Bangladesh

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Identifying flow processes in multi-aquifer flow systems is a considerable challenge, especially if substantial abstraction occurs. The Rajshahi Barind groundwater flow system in Bangladesh provides an example of the manner in which flow processes can change with time. At some locations there has been a decrease with time in groundwater heads and also in the magnitude of the seasonal fluctuations. This report describes the important stages in a detailed field and modelling study at a specific location in this groundwater flow system. To understand more about the changing conditions, piezometers were constructed in 2015 at different depths but the same location; water levels in these piezometers indicate the formation of an additional water table. Conceptual models are described which show how conditions have changed between the years 2000 and 2015. Following the formation of the additional water table, the aquifer system is conceptualised as two units. A pumping test is described with data collected during both the pumping and recovery phases. Pumping test data for the Lower Unit are analysed using a computational model with estimates of the aquifer parameters; the model also provided estimates of the quantity of water moving from the ground surface, through the Upper Unit, to provide an input to the Lower Unit. The reasons for the substantial changes in the groundwater heads are identified; monitoring of the recently formed additional water table provides a means of testing whether over-abstraction is occurring.

Résumé

L’identification des processus d’écoulement des systèmes d’écoulement multi-aquifères est un défi considérable, spécialement si des prélèvements substantiels se produisent. Le système d’écoulement des eaux souterraines de Rajshahi Barind au Bengladesh fournit un exemple de la manière dont les processus d’écoulement peuvent changer avec le temps. A certains endroits, il y a eu une diminution des charges hydrauliques des eaux souterraines avec le temps et aussi dans l’amplitude des fluctuations saisonnières. Cet article décrit les importantes étapes dans un secteur détaillé et une étude de modélisation sur un lieu spécifique dans ce système d’écoulement des eaux souterraines. Pour mieux comprendre le changement de ces conditions, des piézomètres ont été réalisés en 2015 à des profondeurs différentes, mais au même endroit; les niveaux d’eau dans ces piézomètres indiquent la formation d’une nappe d’eau supplémentaire. Les modèles conceptuels décrits montrent comment les conditions ont changé entre les années 2000 et 2015. A la suite de la formation de la nappe d’eau supplémentaire, le système aquifère est conceptualisé ainsi en deux unités. Un essai de pompage est décrit avec des données recueillies au cours aussi bien des phases de pompage que de remontée. Les données de l’essai de pompage pour l’unité inférieure sont analysées en utilisant un modèle de calcul avec l’estimation de paramètres de l’aquifère; le modèle a également fourni des estimations de la quantité d’eau qui s’infiltre de la surface du sol, au travers de l’unité supérieure, pour alimenter l’unité inférieure. Les raisons des changements substantielles dans les charges hydrauliques des eaux souterraines ont été identifiées; le suivi de la nappe d’eau supplémentaire formée récemment fournit un moyen de tester si la surexploitation se produit.

Resumen

La identificación de los procesos de flujo en sistemas de flujo de acuíferos múltiples es un desafío considerable, sobre todo si existe una importante extracción. El sistema de flujo de agua subterránea de Rajshahi Barind en Bangladesh proporciona un ejemplo de la manera en que los procesos pueden cambiar el flujo con el tiempo. En algunos lugares se ha producido una disminución con el tiempo en las cargas hidráulicas del agua subterránea y también en la magnitud de las fluctuaciones estacionales. Este artículo describe las etapas importantes de un estudio detallado de campo y de modelado en una ubicación específica en este sistema de flujo de agua subterránea. Para entender más sobre las condiciones cambiantes, se construyeron en el año 2015, piezómetros a diferentes profundidades, pero en el mismo lugar; los niveles de agua en estos piezómetros indican la formación de un capa freática adicional. Se describen los modelos conceptuales, los cuales muestran cómo han cambiado las condiciones entre los años 2000 y 2015. Tras la formación de la capa freática adicional, se conceptualiza el sistema acuífero en dos unidades. Se describe un ensayo de bombeo con los datos recogidos durante las fases de bombeo y recuperación. Se analizaron los datos del ensayo de bombeo para la Unidad Inferior usando un modelo computacional con las estimaciones de los parámetros del acuífero; el modelo también proporciona estimaciones de la cantidad de agua que se mueve desde la superficie del suelo, a través de la Unidad Superior, para proporcionar una entrada a la Unidad Inferior. Se identificaron las razones de los cambios sustanciales en las cargas hidráulica del agua subterránea; el monitoreo del nivel freático adicional recientemente formado proporciona un medio de comprobación de que existe un exceso en la extracción.

摘要

确定多重含水层水流系统中的水流过程是一个很大的挑战,特别是在大量抽水的情况下更是如此。在孟加拉Rajshahi Barind地区的地下水水流系统中,水流过程可以随时间变化而变化。在相同的地点,地下水水头以及季节性波动的幅度出现降低。本文描述了此地下水水流系统某一特定地点详细的野外和模拟研究中的重要阶段。为了了解更多的变化条件,2015年在同一地点不同的深度安装了测压计;这些测压计的水位表明形成了额外的水位。论述了显示2000年至2015年条件是如何变化的概念模型。额外水位形成之后,含水层系统概念上分为两个单元。利用抽水期和恢复期收集的资料论述了抽水试验。根据含水层参数估算数据利用计算模型分析了下部单元的抽水试验资料;模型还提供了地表水通过上部单元流向下部水量的估算数,提供了流向下部单元的水量。确定了地下水水头很大变化的原因;对最近形成的额外水位监测提供了测试是否出现超采的一个手段。

Resumo

Identificar processos de escoamento em sistemas de escoamento multiaquífero é um desafio considerável, especialmente se ocorrerem captações significativas. O sistema de escoamento de águas subterrâneas de Rajshahi Barind em Bangladesh fornece um exemplo da maneira na qual o processo de escoamento pode se alterar com o tempo. Em algumas localidades têm havido um decaimento nos níveis de águas subterrâneas com o tempo e também na magnitude das flutuações sazonais. Este artigo descreve os estágios importantes em um estudo detalhado de campo e de modelagem em uma localização específica nesse sistema de escoamento de águas subterrâneas. Para entender mais sobre as mudanças de condições, em 2015 foram construídos piezômetros em diferentes profundidades, porém na mesma localização. Níveis de água nesses piezômetros indicam a formação de um nível freático adicional. Modelos conceituais são descritos, os quais mostram como as condições têm se alterado entre os anos 2000 e 2015. No que diz respeito à formação adicional de um nível freático, o sistema aquífero é conceitualizado como duas unidades. Um teste de bombeamento é descrito com dados coletados durante ambas as fases de bombeamento e recuperação. Dados do teste de bombeamento para a Unidade Inferior foram analisados usando um modelo computacional com estimativas dos parâmetros do aquífero. O modelo também forneceu estimativas das quantidades de água que se movem a partir da superfície do solo, através da Unidades Superior, até fornecer uma entrada para a Unidade Inferior. Os motivos para mudanças significativas nos níveis de águas subterrâneas foram identificados. O monitoramento do nível freático recém-formado permite uma maneira de testar se estão ocorrendo captações adicionais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adham MI, Jahan CS, Mazumder QH, Hossain MMA, Haque A-M (2010) Study on groundwater recharge potentiality of Barind Tract, Rajshahi District, Bangladesh using GIS and remote sensing technique. J Geol Soc India 75:432–438

    Article  Google Scholar 

  • Alam MS (1993) Stratigraphical and paleo-climatic studies of the quaternary deposits in north-western Bangladesh. PhD Thesis, Free University of Brussels, Belguim

  • Asad-uz-Zaman M (2013) Barind: a paradigm of sustainable irrigation management for Bangladesh and beyond. In: Securing water for all, Asian water week 2013. Asian Development Bank. http://www.k-learn.org/system/files/materials/2013/03/barind-paradigm-sustainable-irrigation-management-bangladesh-and-beyond.pdf. Accessed 18 July 2016

  • Asad-uz-Zaman M, Rushton KR (2006) Improved yield from aquifers of limited saturated thickness using inverted wells. J Hydrol 326:311–324

    Article  Google Scholar 

  • Butler J, Stotler R, Whittemore D, Reboulet E (2013) Interpretation of water-level changes in the High Plains Aquifer in western Kansas. Ground Water 51(2):180–190

    Google Scholar 

  • Clarke L (1977) The analysis and planning of step-drawdown tests. Quart J Eng Geol 10:125–143

    Article  Google Scholar 

  • Contoux C, Violette S, Vivona R, Goblet P, Patriarche D (2013) How basin model results enable the study of multi-layer aquifer response to pumping: the Paris Basin, France. Hydrogeol J 21:545–557

    Article  Google Scholar 

  • Dennehy KF, Litke DW, McMahon PB (2002) The High Plains Aquifer, USA: groundwater development and sustainability. Geol Soc London Spec Publ 193:99–119

    Article  Google Scholar 

  • Feng Q, Zhan H (2015) On the aquitard–aquifer interface flow and the drawdown sensitivity with a partially penetrating pumping well in an anisotropic leaky confined aquifer. J Hydrol 521:74–83

    Article  Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • González-Ramón A, Rodríguez-Arévalo J, Martos-Rosillo S, Gollonet J (2013) Hydrogeological research on intensively exploited deep aquifers in the ‘Loma de Úbeda’ area (Jaén, southern Spain). Hydrogeol J 21:887–903

    Article  Google Scholar 

  • Haacker EMK, Kendall AD, Hyndman DW (2015) Water level declines in the High Plains aquifer: predevelopment to resource senescence. Groundwater 54(2):231–242

    Article  Google Scholar 

  • Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 36:95–100

    Article  Google Scholar 

  • Hasan MK, Ahmed KM, Burgess WG, Dottridge J, Asad-uz-Zaman M (1998) Limits on the sustainable development of the Dupi Tila aquifer, Bangladesh. In: Wheater HS, Kirby C (eds) Hydrology in a changing environment, vol 2. Wiley, Chichester, UK, pp 185–194

    Google Scholar 

  • Hoque MA, Hoque MM, Ahmed KM (2007) Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeol J 15:1523–1534

    Article  Google Scholar 

  • Islam MN, Chowdhury A, Islam KM, Rahaman MZ (2014) Development of rainfall recharge model for natural groundwater recharge estimation in Godagari Upazila of Rajshahi District, Bangladesh. Am J Civil Eng 2(2):48–52. doi:10.11648/j.ajce.20140202.16

    Article  Google Scholar 

  • Jacob CE (1946) Radial flow in a leaky artesian aquifer. Trans Am Geophys Union 27:198–205

    Article  Google Scholar 

  • Jaworska-Szulc B (2009) Groundwater flow modelling of multi-aquifer systems for regional resources evaluation: the Gdansk hydrogeological system, Poland. Hydrogeol J 17:1521–1542

    Article  Google Scholar 

  • Kavalanekar NB, Sharma SC, Rushton KR (1992) Over-exploitation of an alluvial aquifer in Gujarat, India. Hydrol Sci J 37:329–346

    Article  Google Scholar 

  • Kruseman GP, de Ridder NA (1990) Analysis and evaluation of pumping test data, 2nd edn. Publ. no. 47, International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 377 pp

  • Michael HA, Voss CI (2009) Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol J 17:1561–1577

    Article  Google Scholar 

  • Moench AF (2004) Importance of the vadose zone in analyses of unconfined aquifer tests. Ground Water 42(2):223–233

    Article  Google Scholar 

  • Morris BL, Seddique AA, Ahmed KM (2003) Response of the Dupi Tila aquifer to intensive pumping in Dhaka, Bangladesh. Hydrogeol J 11:496–503

    Article  Google Scholar 

  • Neuman SP, Witherespoon PA (1969) Applicability of current theories of flow in leaky aquifers. Water Resour Res 5:817–829

    Article  Google Scholar 

  • Rashid MA (2005) Groundwater management for rice irrigation in Barind area of Bangladesh. PhD Thesis, Bangladesh Agricultural University, Mymensingh, Bangladesh

  • Rathod KS, Rushton KR (1991) Interpretation of pumping from a two-zone layered aquifer using a numerical model. Ground Water 29:499–509

    Article  Google Scholar 

  • Rushton KR (2003) Groundwater hydrology: conceptual and computational models. Wiley, Chichester, UK

    Book  Google Scholar 

  • Rushton KR, Senarath DCH (1983) A mathematical model study of an aquifer with significant dewatering. J Hydrol 62:143–158

    Article  Google Scholar 

  • Rushton KR, Srivastava NK (1988) Interpreting injection well tests in an alluvial aquifer. J Hydrol 99:49–60

    Article  Google Scholar 

  • Rushton KR, Eilers VM, Carter RC (2006) Improved soil moisture balance methodology for recharge estimation. J Hydrol 318:379–399

    Article  Google Scholar 

  • Selim Reza AHM, Mazumder QH, Ahmed M (2011) Groundwater balance study in the High Barind, Bangladesh. Rajshahi Univ J Sci 39:11–26

    Google Scholar 

  • Shahid S, Hazarika MK (2010) Groundwater drought in the northwestern districts of Bangladesh. Water Resour Manag 24:1989–2006

    Article  Google Scholar 

  • Shamsudduha M, Taylor RG, Ahmed KM, Zahid A (2011) The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeol J 19:901–916

    Article  Google Scholar 

  • Sophocleous M (2012) The evolution of groundwater management paradigms in Kansas and possible new steps towards water sustainability. J Hydrol 414–415:550–559

    Article  Google Scholar 

  • Tediosi A, Whelan MJ, Rushton KR, Thompson TRE, Gandolfi C, Pullan SP (2012) Measurement and conceptual modelling of herbicide transport to field drains in a heavy clay soil with implications for catchment-scale water quality management. Sci Total Environ 438:103–112

    Article  Google Scholar 

  • UNDP (1982) Ground water survey: the hydrogeological conditions of Bangladesh. Technical report, United Nations Development Program, New York

    Google Scholar 

  • Walker SH, Rushton KR (1984) Verification of lateral percolation losses from irrigated rice fields by a numerical model. J Hydrol 71:335–351

    Article  Google Scholar 

  • Whittemore DO, Butler JJ, Wilson BB (2016) Assessing the major drivers of water-level declines: new insights into the future of heavily stressed aquifers. Hydrol Sci J 61(1):134–145

    Article  Google Scholar 

Download references

Acknowledgements

The Authors acknowledge the valuable and enthusiastic assistance with the fieldwork of Mr. Zillul Bari, Mr. M. A. Latif and Mr. Abdur Rahman of BMDA, also Mr. M. A. Rakib, Mr. M. A. Kalam and Mr. Arif of CARB and Mr. Taslim, Tubewell Operator for Amtoli-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rushton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rushton, K.R., Zaman, M.A. Development of unconfined conditions in multi-aquifer flow systems: a case study in the Rajshahi Barind, Bangladesh. Hydrogeol J 25, 25–38 (2017). https://doi.org/10.1007/s10040-016-1463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1463-2

Keywords

Navigation