Skip to main content

Advertisement

Log in

Analysis of geological structure and anthropological factors affecting arsenic distribution in the Lahore aquifer, Pakistan

Analyse de la structure géologique et des facteurs anthropiques affectant la distribution de l’arsenic dans l’aquifère de Lahore, au Pakistan

Análisis de la estructura geológica y factores antropológicos que afectan a la distribución de arsénico en el acuífero Lahore, Pakistán

巴基斯坦拉合尔含水层中地质构造及影响砷分布的人类因素分析

Análise da estrutura geológica e fatores antropológicos afetando a distribuição de arsênico no aquífero Lahore, Paquistão

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

This study investigated the potential factors affecting arsenic concentration in the groundwater system of Lahore, Pakistan. The effects of several factors such as population density (PD), pumping rate (PR), impermeable land use (LU), surface elevation (SE), and water-table elevation (WL) on arsenic concentration were studied in 101 union councils of Lahore. Forty single and multi-factor models were established using geographic information system (GIS) techniques to develop an arsenic contamination map and to investigate the most effective combinations among factors. Additionally, statistical tests were used to evaluate arsenic concentration between classes of the same single factor. The arsenic concentration in the Lahore aquifer varied from 0.001 to 0.143 mg L−1. The highest arsenic concentrations were detected in the Walled City and the town of Shahdara. Among the 40 raster models, groundwater arsenic concentration showed the best matching frequency with single-factor models for PD (50.70 %) and SE (47 %). Thus, PD and SE were used to develop an arsenic distribution raster map, and they were also used to study the effect of aquifer depth on arsenic concentration. PD was found to have hidden latent variables such as PR and LU. The shallow aquifer depth was negatively correlated with arsenic concentration (r = −0.23) and positively with PR (r = 0.15). Therefore, when there was high PR in wells with smaller aquifer depth, the arsenic concentration was high. The existing water treatment and alternative water resources are good options, which should be developed to deal with Lahore wells contaminated with arsenic at high concentrations.

Résumé

Cette étude a examiné les facteurs potentiels affectant la concentration d’arsenic dans le système des eaux souterraines de Lahore au Pakistan. Les effets de plusieurs facteurs, tels que la densité de la population (PD), le débit de pompage (PR), l’utilisation des terres imperméables (LU), l’altitude des surfaces (SE), et le niveau piézométrique (WL) sur la concentration en arsenic ont été étudiés dans 101 conseils syndicaux de Lahore. Quarante modèles simples et multi-facteurs ont été établis en utilisant les techniques du système d’information géographique afin d’établir une carte de la contamination en arsenic et d’étudier les combinaisons les plus efficaces entre les facteurs. En outre, les tests statistiques ont été utilisés pour évaluer la concentration d’arsenic entre les classes d’un même facteur. La concentration d’arsenic dans l’aquifère de Lahore est comprise entre 0.001 et 0.143 mg L−1. Les concentrations d’arsenic les plus élevées ont été détectées dans la ville fortifiée et de Shahdara. Parmi les 40 modèles à quadrillage, la concentration en arsenic des eaux souterraines a montré que la meilleure fréquence de correspondance avec les modèles à facteur unique pour PD (50.70 %) et SE (47 %). Ainsi, PD et SE ont été utilisés pour développer une carte à quadrillage de la distribution de l’arsenic, et ont également été utilisés pour étudier l’effet de la profondeur de l’aquifère sur la concentration en arsenic. Il a été trouvé que PD est un facteur qui masque des variables latentes, telles que PR et LU. La profondeur de l’aquifère superficiel était corrélée négativement avec la concentration en arsenic (r = −0.23) et positivement avec PR (r = 0.15). Par conséquent, lorsque PR est élevé dans les puits et que la profondeur de l’aquifère est la plus petite, la concentration en arsenic est élevée. Le traitement de l’eau existant et les ressources alternatives en eau sont de bonnes options, qui devraient être développées pour faire face aux puits contaminés à l’arsenic à des concentrations élevées à Lahore.

Resumen

Este estudio investigó los posibles factores que afectan la concentración de arsénico en el sistema de aguas subterráneas de Lahore, Pakistán. Se estudiaron los efectos de varios factores, tales como la densidad de población (PD), caudal de bombeo (PR), el uso del suelo impermeable (LU), elevación de la superficie (SE), y la elevación de la capa freática (WL) en la concentración de arsénico en 101 aldeas de Lahore. Se verificaron cuarenta modelos de uno o varios de los factores utilizando técnicas de sistema de información geográfica (GIS) para desarrollar un mapa de la contaminación por arsénico y para investigar las combinaciones más eficaces entre los factores. Además, se utilizaron pruebas estadísticas para evaluar la concentración de arsénico entre las clases del mismo factor. La concentración de arsénico en el acuífero Lahore varió desde 0.001 hasta 0.143 mg L−1. Las mayores concentraciones de arsénico se detectaron en la Walled City y Shahdara Town. Entre los 40 modelos raster, la concentración de arsénico del agua subterránea mostró la mejor frecuencia coincidente con los modelos de un solo factor para la PD (50.70 %) y SE (47 %). Por lo tanto, PD y SE se utilizaron para desarrollar un mapa raster de distribución de arsénico, y también se utilizaron para estudiar el efecto de la profundidad del acuífero en la concentración de arsénico. Se encontró que en PD y LU se han ocultado variables latentes, tales como PR y LU. La profundidad acuífero superficial se correlacionó negativamente con la concentración de arsénico (r = −0.23) y positivamente con PR (r = 0.15). Por lo tanto, cuando había un alto PR en los pozos con menores profundidades del acuífero, la concentración de arsénico fue alta. El tratamiento del agua existente y los recursos hídricos alternativos son buenas opciones, que se deben desarrollar para hacer frente a los pozos contaminados con altas concentraciones de arsénico en Lahore.

摘要

此项研究调查了影响巴基斯坦拉合尔地下水系统砷分布的潜在因素。在拉合尔101个社区研究了若干个对砷分布有影响的因素,诸如人口密度、抽水量、不透水性的土地利用、地表高程及水位高程。利用地理信息系统技术建立了40个单个因素及多重因素模型,绘制了砷污染图,研究了这些因素最有效的组合。另外,利用统计实验评估了相同单一因素级别之间的砷浓度。拉合尔含水层中的砷浓度从0.001到0.143 mg L−1不等。在Walled市和Shahdara镇检测出的砷浓度最高。在40个栅格模型中,地下水砷浓度显示出了人口密度(50.70 %)和地表高程(47 %)单个因素模型的最佳匹配频率。因此,人口密度和地表高程用来绘制砷分布栅格图,还用来研究含水层深度对砷浓度的影响。发现人口密度具有隐伏的潜在变量,如抽水量和不透水性的土地利用。浅层含水层深度与砷浓度(r = −0.23)负相关,与抽水量(r = 0.15)正相关。因此,当抽水量很大而含水层深度较小时,砷浓度就很大。现有的水处理及供选择的水资源是很好的选项,应当进一步研究这些选项以处理拉合尔遭受高浓度砷污染的水井。

Resumo

Esse estudo investigou os potenciais fatores que afetam a concentração de arsênico no sistema de águas subterrâneas de Lahore, Paquistão. Os efeitos de vários fatores, como a densidade populacional (DP), taxa de bombeamento (TB), impermeabilização do solo (IS), elevação da superfície (ES), altura do lençol freático (ALF) na concentração de arsénio foram estudados em 101 conselhos da união de Lahore. Quarenta modelos individuais e multi-fator foram estabelecidos utilizando técnicas de sistema de informação geográfica (GIS) para desenvolver um mapa de contaminação por arsênico e investigar as combinações mais eficazes entre os fatores. Além disso, os testes estatísticos foram utilizados para avaliar a concentração de arsénio entre classes do mesmo fator individualmente. A concentração de arsénio no aquífero Lahore variou de 0.001 a 0.143 mg L−1. As maiores concentrações de arsénio foram detectados na Cidade Murada e na Cidade de Shahdara. Entre os 40 modelos raster, a concentração de arsênio nas águas subterrâneas apresentou a melhor frequência correspondente, com modelos de fator individual para DP (50.70 %) e ES (47 %). Assim, DP e ES foram usadas para desenvolver um mapa raster de distribuição de arsénio, e também foram utilizadas para estudar o efeito da profundidade do aquífero na concentração de arsénio. Foi descoberto que a DP possui variáveis latentes ocultas, como TB e IS. A profundidade do aquífero raso foi correlacionada negativamente com a concentração de arsénio (r = −0.23) e positivamente com a TB (r = 0.15). Portanto, quando houve alta TB em poços em aquíferos de menor profundidade, a concentração de arsênico foi maior. O tratamento de água existente e recursos hídricos alternativos são boas opções, que devem ser desenvolvidas para lidar com os poços de Lahore contaminados com arsênico em altas concentrações.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzal S, Ahmad I, Younas M, Zahid MD, Khan MA, Ijaz A, Ali K (2000) Study of water quality of Hudiara drain, India-Pakistan. Environ Int 26(1):87–96

    Article  Google Scholar 

  • Ahmad SA, Sayed MH, Barua S, Khan MH, Faruquee MH, Jalil A, Abdul Hadi S, Talukder HK (2001) Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect 109(6):629

    Article  Google Scholar 

  • Ahuja S (2008) Arsenic contamination of groundwater: mechanism, analysis, and remediation. Wiley, Chichester, UK

  • APHA (2012) Standard method for the estimation of water and waste water, 22nd edn. American Public Health Association, American Water Works Association and Water Environment Federation, Washington, DC

  • Azizullah A, Khattak MNK, Richter P, Hader DP (2011) Water pollution in Pakistan and its impact on public health: a review. Environ Int 37(2):479–497

    Article  Google Scholar 

  • Basharat M, Rizvi SA (2011) Groundwater extraction and waste water disposal regulation: is Lahore aquifer at stake with as usual approach. In: Pakistan Engineering Congress, World Water Day, Lahore, April 2011, pp 112–134

  • Buschmann J, Berg M (2009) Impact of sulfate reduction on the scale of arsenic contamination in groundwater of the Mekong, Bengal and Red River deltas. Appl Geochem 24(7):1278–1286

    Article  Google Scholar 

  • Chen A (2002) Urbanization and disparities in China: challenges of growth and development. China Econ Rev 13(4):407–411

    Article  Google Scholar 

  • Chen CJ, Chen CW, Wu MM, Kuo TL (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66(5):888

    Article  Google Scholar 

  • Chen CJ, Hsueh YM, Lai MS, Shyu MP, Chen SY, Wu MM, Tsung-Li K, Tai TY (1995) Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25(1):53–60

    Article  Google Scholar 

  • Cuthbert MO, Burgess WG, Connell L (2002) Constraints on sustainable development of arsenic-bearing aquifers in southern Bangladesh, part 2: preliminary models of arsenic variability in pumped groundwater. Geol Soc Lond Spec Publ 193(1):165–179

    Article  Google Scholar 

  • Daily Times (2007) WWF report on water contamination: Lahore’s water supply has excess arsenic, fluorine. Daily Times (newspaper report). Website: http://poisonfluoride.com/phpBB3/viewtopic.php?f=2&t=246. Accessed 14 June 2014

  • Deng Y, Wang Y, Ma T (2009) Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia. Appl Geochem 24(4):587–599

    Article  Google Scholar 

  • Farooqi A, Firdous N, Masuda H, Haider N (2003) Fluoride and arsenic poisoning in ground water of Kalalanwala Area near Lahore, Pakistan. Geochim Cosmochim Acta Suppl 67:90

    Google Scholar 

  • Farooqi A, Masuda H, Kusakabe M, Naseem M, Firdous N (2007) Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochem J 41(4):213–234

    Article  Google Scholar 

  • Finkelman RB, Orem W, Castranova V, Tatu CA, Belkin HE, Zheng B, Lerch HE, Maharaj SV, Bates AL (2002) Health impacts of coal and coal use: possible solutions. Int J Coal Geol 50(1):425–443

    Article  Google Scholar 

  • Focazio MJ (2002) Assessing ground-water vulnerability to contamination: providing scientifically defensible information for decision makers. US Geol Surv Circ 1224

  • Gabriel HF (2010) An appraisal of climate responsive urban groundwater management options in a stressed aquifer system. International Centre of Water for Food Security School of Environmental Sciences, PhD Thesis, Charles Sturt University, Bathurst, Australia

  • Gabriel H, Khan S (2010) Climate responsive urban groundwater management options in a stressed aquifer system. IAHS Publ. 338, IAHS Wallingford, UK, pp 166–168

  • Ghosh N, Singh R (2009) Groundwater arsenic contamination in India: vulnerability and scope for remedy. 5th Asian Regional Conference of ICID, Adelaide, Australia, June 2012

  • Greenaman DW, Swarzenski WV, Bennett GD (1967) Ground-water hydrology of the Punjab, West Pakistan, with emphasis on problems caused by canal irrigations. US Geol Surv Water Suppl Pap 1608, 10 folding charts, 70 pp

  • Hammer MJ, Elser G (1980) Control of ground-water salinity, Orange County, California. Ground Water 18(6):536–540

    Article  Google Scholar 

  • Haq I, Cheema W (2007) Adverse effects of poor wastewater management practices on ground water quality in Rawalpindi and mitigation strategies. Water and Sanitation Agency (WASA), Rawalpindi District Authority, Rawalpindi, Pakistan

  • He J, Charlet L (2013) A review of arsenic presence in China drinking water. J Hydrol 492:79–88

    Article  Google Scholar 

  • Hossain MM, Piantanakulchai M (2013) Groundwater arsenic contamination risk prediction using GIS and classification tree method. Eng Geol 156:37–45

    Article  Google Scholar 

  • Izhar-ul-Haq Arshad M IJ (1998) Environmental conservation of wetlands in Pakistan. Symposium, Environment Protection and Resource Conservation. 67th Pakistan Engineering Congress, vol XXV, Lahore, May 1998

  • Kahlown M, Majeed A (2003) Water-resources situation in Pakistan: challenges and future strategies. In: Water resources in the south: present scenario and future prospects. COMSAT, Islamabad, Pakistan, pp 21–41

  • Karim MM (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34(1):304–310

    Article  Google Scholar 

  • Khan S, Rana T, Gabriel HF, Ullah MK (2008) Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin, Pakistan. Hydrogeol J 16(8):1635–1654

    Article  Google Scholar 

  • Khattak MA, Ahmed N, Qazi MA, Izhar A, Ilyas S, Chaudhary M, Khan M, Iqbal N, Waheed T (2012) Evaluation of ground water quality for irrigation and drinking purposes of the areas adjacent to Hudiara industrial drain, Lahore, Pakistan. Pak J Agric Sci 49(4):549–556

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  Google Scholar 

  • Midrar-ul-haq R, HajikanPunu M (2005) Surface and groundwater contamination in NWFP and Sindh provinces with respect to trace elements. Int J Agric Biol 7(2):214–217

    Google Scholar 

  • Millman A, Tang D, Perera FP (2008) Air pollution threatens the health of children in China. Pediatrics 122(3):620–628

    Article  Google Scholar 

  • MoCC (2012) National Climate Change Policy (Status report on investing wisely in sanitation and water for all). Ministry of Climate Change, Pakistan Sector, 44 pp. http://www.mocc.gov.pk/gop/index.php?q=aHR0cDovLzE5Mi4xNjguNzAuMTM2L21vY2xjL3VzZXJmaWxlczEvZmlsZS9Nb2NsYy9Qb2xpY3kvTmF0aW9uYWwlMjBDbGltYXRlJTIwQ2hhbmdlJTIwUG9saWN5JTIwb2YlMjBQYWtpc3RhbiUyMCgyKS5wZGY%3D. Accessed 15 May 2013

  • Muhammad S, Shah MT, Khan S (2011) Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem J 98(2):334–343

    Article  Google Scholar 

  • Muhammad AM, Zhonghua T, Dawood AS, Earl B (2014) Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofãsica Int 54(1):67–81

    Google Scholar 

  • Mukherjee AB, Bhattacharya P (2001) Arsenic in groundwater in the Bengal Delta Plain: slow poisoning in Bangladesh. Environ Rev 9(3):189–220

    Article  Google Scholar 

  • Mukherjee SC, Rahman MM, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Kshitish CS, Chakraborti D (2003) Neuropathy in arsenic toxicity from groundwater arsenic contamination in West Bengal, India. J Environ Sci Health A 38(1):165–183

    Article  Google Scholar 

  • Niaz A (2005) Ground water modeling: a case study of lahore aquifer. Proceedings of South Asia Regional Training Workshop on Watershed Modeling, Global Change Impact Studies Centre (GCISC), Islamabad, Pakistan, March 7–18, 2005

  • Nickson RT, McArthur JM, Shrestha B, Kyaw-Myint TO, Lowry D (2005) Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl Geochem 20(1):55–68

    Article  Google Scholar 

  • PCRWR (2012) Quarterly report: bottled water quality (January–March 2012). Khyban-e-johar, H-8/1, Ministry of Science & Technology, Islamabad, Pakistan

  • Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454(7203):505–508

    Article  Google Scholar 

  • Qureshi AS, Tushaar S, Akhtar MT (2003) The groundwater economy of Pakistan. Working paper 64, IWMI, Lahore

  • Rahman M, Tondel M, Ahmad SA, Axelson O (1998) Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol 148(2):198–203

    Article  Google Scholar 

  • Rahman M, Vahter M, Wahed MA, Sohel N, Yunus M, Streatfield PK, El Arifeen S, Bhuiya A, Zaman K, Chowdhury AMR, Ekstrom EC (2006) Prevalence of arsenic exposure and skin lesions: a population based survey in Matlab, Bangladesh. J Epidemiol Community Health 60(3):242–248

    Article  Google Scholar 

  • Rapant S, Krcmova K (2007) Health risk assessment maps for arsenic groundwater content: application of national geochemical databases. Environ Geochem Health 29(2):131–141

    Article  Google Scholar 

  • Ravenscroft P (2003) An overview of the hydrogeology of Bangladesh. In: Rahman AA, Ravenscroft P, Hug S (eds) Groundwater Resources of Bangladesh. Bangladesh Cent. for Adv. Stud., Dhaka

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley, Chichester, UK

  • Reilly T, Pollock D (1993) Factors affecting areas contributing recharge to wells in shallow aquifers. US Geol Surv Water Suppl Pap 2412, 21 pp

  • Reilly T, Pollock D (1995) Effect of seasonal and long-term changes in stress on sources of water to wells. US Geol Surv Water Suppl Pap 2445(25):979–988

  • Rizvi J (2011) Aquifer plunges by 300pc in 3 decades. The News International. http://www.thenews.com.pk/archive/print/297010-aquifer-plunges-by-300pc-in-3-decades. Accessed 22 April 2011

  • Schnoor JL (1996) Environmental modeling: fate and transport of pollutants in water, air, and soil. Wiley, Chichester, UK

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  Google Scholar 

  • Smith AH, Goycolea M, Haque R, Biggs ML (1998) Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water. Am J Epidemiol 147(7):660–669

    Article  Google Scholar 

  • Tondel M, Rahman M, Magnuson A, Chowdhury IA, Faruquee MH, Ahmad SA (1999) The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect 107(9):727

    Article  Google Scholar 

  • Velea T, Gherghe L, Predica V, Krebs R (2009) Heavy metal contamination in the vicinity of an industrial area near Bucharest. Environ Sci Pollut Res 16(1):27–32

    Article  Google Scholar 

  • Vidal JM, Espada MP, Frenich AG, Arrebola FJ (2000) Pesticide trace analysis using solid-phase extraction and gas chromatography with electron-capture and tandem mass spectrometric detection in water samples. J Chromatogr A 867(1):235–245

    Article  Google Scholar 

  • Wang Y, Merkel BJ, Li Y, Ye H, Fu S, Ihm D (2007) Vulnerability of groundwater in Quaternary aquifers to organic contaminants: a case study in Wuhan City, China. Environ Geol 53(3):479–484

    Article  Google Scholar 

  • WAPDA/EUAD (1989) Booklet on hydrogeological map of Pakistan, 1:2,000,000 scale. Water and Power Development Authority, Lahore and Environment and Urban Affairs Division, Gov. of Pakistan, Islamabad

  • WASA (2007) Lahore Development Authority (2007). Budget 2007–2008, Report, City District Gov., Lahore

  • WHO-UNICEF J (2008) Progress on drinking water and sanitation: special focus on sanitation. WHO, UNICEF, Geneva, New York

  • Xiao XY, Chen TB, Liao XY, Wu B, Yan XL, Zhai LM, Wang LX (2008) Regional distribution of arsenic contained minerals and arsenic pollution in China. Geogr Res 1:021

    Google Scholar 

  • Yager RM, Heywood CE (2014) Simulation of the effects of seasonally varying pumping on intraborehole flow and the vulnerability of public supply wells to contamination. Groundwater 52(S1):40–52

    Article  Google Scholar 

  • Yasar A, Shahzadi U (2014) Comparison of low concentration and high concentration arsenic removal techniques and evaluation of concentration of arsenic in ground water: a case study of Lahore, Pakistan. Korean Chem Eng Res 52(5):620–626

    Article  Google Scholar 

  • Zheng C, Wang P (1996) Parameter structure identification using Tabu Search and simulated annealing. Adv Water Resour 19(4):215–224

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Geology Survey Bureau of China, which has been provided financial support for this research work, through the project “Comprehensive study on investigation and evaluation of groundwater resources and environment problems in Jianghan Dongting Plain. No. 1212011121142”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akhtar Malik Muhammad or Tang Zhonghua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, A.M., Zhonghua, T., Sissou, Z. et al. Analysis of geological structure and anthropological factors affecting arsenic distribution in the Lahore aquifer, Pakistan. Hydrogeol J 24, 1891–1904 (2016). https://doi.org/10.1007/s10040-016-1453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1453-4

Keywords

Navigation