Skip to main content
Log in

Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations

Revue bibliographique: Etat de l’art des modèles à canaux clairsemés et leur applicabilité à l’évaluation de la performance des dépôts de déchets radioactifs dans des formations cristallines fracturées

Revisión: El estado del arte de los modelos de canal dispersivo y su aplicabilidad en la evaluación del rendimiento de los depósitos de residuos radiactivos en formaciones cristalinas fracturadas

评论:稀疏通道模型的技术发展水平及其在评价断裂结晶岩地层中放射性废料存储地性能的适用性

Revisão: O estado da arte de modelos de canais esparsos e sua aplicabilidade na avaliação de desempenho dos depósitos de resíduos radioativos em formações cristalinas fraturadas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. ‘Sparse channels’ refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.

Résumé

Des expériences réalisées en laboratoire et sur le terrain sur des roches fracturées montrent que l’écoulement et le transport de soluté se produisent souvent le long de canaux d’écoulement. Le terme de ‘Canaux clairsemés’ fait référence au cas où ces canaux sont caractérisés par un écoulement dans des longues voies d’écoulement séparés les uns des autres par de grandes distances par rapport à la taille du domaine d’écoulement. Une étude bibliographique est présentée, apportant des informations nécessaires pour évaluer si le concept de réseau de canaux clairsemés est une représentation appropriée pour le système d’écoulement dans une roche fracturée fermée de faible transmissivité, telle que la roche environnant le dépôt de déchets nucléaires dans des roches cristallines profondes. Un nombre d’observations sont faites dans cette revue bibliographique. Premièrement, les modèles de réseau de fractures classiques peuvent conduire à des résultats erronés pour l’écoulement et le transport de soluté dans les roches fracturées fermées. Deuxièmement, une dimension d’écoulement de 1, telle que déterminée par l’analyse des données de pressions dans les tests en forage, peut être indicative d’un écoulement canalisé, mais cette interprétation n’est pas unique ou définitive. Troisièmement, dans des canaux dispersés, la percolation peut être davantage influencée par la forme de la fracture que la taille de la fracture et son orientation, mais d’autres études sont nécessaires. Quatrièmement, la migration des radionucléides à partir d’un casier de déchets dans un dépôt vers la biosphère peut être fortement influencée par le type de modèle utilisé (par ex. réseau de fractures discrètes, modèle à canaux). Cinquièmement, la détermination de la pertinence de la représentation d’un système d’écoulement in situ par un modèle de réseau de canaux clairsemés nécessite des paramètres qui sont habituellement négligés lors de la caractérisation du site, tel que la densité des canaux ou des intersections de fractures.

Resumen

Los experimentos de laboratorio y de campo realizados en roca fracturada muestran que el flujo y transporte de solutos se producen a menudo a lo largo de los canales de flujo. “Canales dispersivos” se refieren al caso en que estos canales se caracterizan por un flujo de largas trayectorias separadas entre sí por grandes distancias en relación con el tamaño del dominio de flujo. Se presenta un estudio de la literatura que reúne información útil para evaluar si el concepto de red de canales dispersivos es una representación adecuada del sistema de flujo en una roca de apretada fracturación de baja transmisividad, como la que rodea a un repositorio de residuos nucleares en rocas cristalinas profundas. Una serie de observaciones se hacen en esta revisión. En primer lugar, los modelos de redes de fractura convencionales pueden conducir a resultados inexactos de flujo y transporte de solutos en rocas de una apretada fracturación. En segundo lugar, una dimensión de flujo de 1, como se determina por el análisis de los datos de presión en pruebas de pozos, puede ser indicativo de flujo canalizado, pero esta interpretación no es única o definitiva. En tercer lugar, en los canales dispersivos, la percolación puede estar más influenciada por la forma de la fractura que por el tamaño y la orientación de fractura, pero son necesarios más estudios. En cuarto lugar, la migración de radionucleidos de un depósito de residuos a la biosfera puede estar fuertemente influenciada por el tipo de modelo utilizado (por ejemplo, la red de fracturas discretas, modelo de canal). En quinto lugar, la determinación de la conveniencia de que representa un sistema de flujo en situ por un modelo de red dispersiva de canales necesita parámetros generalmente desatendidos en la caracterización del sitio, tales como la densidad de canales o intersecciones de fracturas.

摘要

对断裂岩进行的室内室外实验显示,水流和溶质运移经常沿水流通道出现。“稀疏通道”指的就是,在这些通道内水流在相对于水流范围有很大间隔并且相互隔绝的很长水流通道内流动。这展示了文献研究结果,把有用的信息整合在一起,用于评价稀疏通道网络概念是否能适当展示透水性低的密封断裂岩诸如深层结晶岩核废料储存地的水流系统。在本评论中进行了一些观察性研究。第一,常规断裂网络模型可能导致密封断裂岩石中水流和溶质运移的结果不精确。第二,由井实验压力数据分析结果确定的水流维度1可能是指示通道化的水流,但这样的解译不是唯一的或者不是决定性的。第三,在稀疏通道中,渗透受到断裂形状的影响可能比受到断裂大小和方向的影响要大,但需要进一步的研究。第四,放射性核素从储存地废料罐迁移到生物圈可能极大地受到所使用的模型类型影响(例如,离散断裂网络,通道模型)。第五,由稀疏通道网络模型确定代表原地水流系统的适宜性需要通常原地描述中忽略的参数,如通道或断裂交叉点的密度。

Resumo

Experimentos laboratoriais e de campo feitos em rochas fraturadas demonstram que o escoamento e o transporte de solutos geralmente ocorrem ao longo de canais de fluxo. ‘Canais esparsos’ se refere ao caso onde esses canais são caracterizados pelo escoamento em longos trajetos de fluxo, separados entre si por grandes espaçamentos, relativos ao tamanho do domínio de fluxo. Um estudo bibliográfico é apresentado, trazendo informações úteis para avaliar se um conceito de rede de canais esparsos é uma representação adequada do sistema de fluxo em rochas fraturadas estreitas e de baixa transmissividade, como os que cercam um depósito de resíduos nucleares em rochas cristalinas profundas. Numeroras observações são feitas nessa revisão. Primeiro, modelos de rede fraturada convencionais podem levar a resultados imprecisos para escoamento e transporte de solutos em rochas fraturadas estreitas. Segundo, uma dimensão de fluxo de 1, como a determinada pela análise de dados de pressão em poços de teste, pode ser indicativo de fluxo canalizado, mas essa interpretação não é exclusiva ou definitiva. Terceiro, em canais esparsos, a percolação pode ser mais influenciada pela forma da fratura do que pelo tamanho da fratura e orientação, mas estudos adicionais são necessários. Quarto, a migração de radionucleídios do contêiner de resíduos em um repositório para a biosfera pode ser fortemente influenciada pelo tipo de modelo utilizado (p.ex. rede de fraturas discretas, modelo de canal). Quinto, a determinação da adequabilidade em representar sistemas e escoamento in situ por modelos de rede de canais esparsos necessita de parâmetros geralmente negligenciados na caracterização do local, como a densidade de canais ou intersecção de fraturas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abelin H, Neretnieks I, Tunbrant S, Moreno L (1985) Final report of the migration in a single fracture: experimental results and evaluation. Stripa Project, Report 85–103, SKB-Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Abelin H, Birgersson L, Gidlung J, Moreno L, Agren T, Widen H, Neretniecks I (1987) 3-D migration experiment in sparsely fractured crystalline rock. In: Apted MJ, Westerman RF (eds) Proceedings scientific basis of nuclear waste management, XI. Mater. Res. Soc. Symp. Proc., vol 112. Elsevier, New York, 199 pp

    Google Scholar 

  • Abelin H, Birgersson L, Agren T, Neretnieks I (1988) A channelling experiment to study flow and transport in natural fractures. In: Lutze L, Ewing RC (eds) Proceeding scientific basis of nuclear waste management, XII. Mater. Res. Soc. Symp. Proc, vol 127. Elsevier, New York, pp 661–668

  • Abelin H, Birgersson L, Wilén H, Agren T, Moreno L, Neretnieks I (1990) Channelling experiment. Stripa project Tech. Rep. 90-13, Nuclear Fuel Safety Project, Sweden Nuclear Fuel and Waste Management Co., Stockholm

  • Andersson JE, Ekman L, Winberg A (1988) Detailed investigations of fracture zones in the Brändan Area, Finnsjön study site: single hole water injection tests in detailed sections—analysis of conductive fracture frequency. Project report 88-08, Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Andersson JE, Ekman L, Gustafsson E, Nordqvist R, Tiren S (1989) Hydraulic interference tests and tracer test within the Brändan Area, Finnsjön study site: the fracture zone project phase 3. Progress report 89-12, Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • Andersson P, Eriksson CO, Gustafsson E, Ittner T (1990) Dipole tracer experiment in a low-angle fracture zone at the Finnsjön site, central Sweden: experimental design and preliminary results. Progress report 90-24, Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24:1796–1804

    Article  Google Scholar 

  • Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25:861–884

    Article  Google Scholar 

  • Black JH (2011) Recognition and parameterization of SCNs. Presentation at Deep Hydrogeology Workshop, Uppsala, Sweden, September 2011

  • Black JH (2012) Selective review of the hydrogeological aspects of SR-site. SSM report 2012:37, Swedish Radiation Safety Authority, Stockholm

  • Black JH (2014) Hydrogeological modelling of fractured crystalline (host) rock as applied at Olkiluoto and Forsmark with special reference to sparse channel networks. In Site Hydro report 2014:1, In Site Hydro, Nottingham, UK

  • Black JH, Kipp KL (1981) Determination of hydrogeological parameters using sinusoidal tests: a theoretical appraisal. Water Resour Res 17(3):686–692

    Article  Google Scholar 

  • Black JH, Barker JA, Noy DJ (1986) Crosshole investigations: the method, theory and analysis of crosshole sinusoidal pressure tests in fissured rock. Stripa project, Internal report 86-03. Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Black JH, Robinson PC, Barker JA (2006) A preliminary investigation of the concept of hyper-convergence. Research report, R-06-30. Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Black JH, Barker JA, Woodman N (2007) An investigation of ‘sparse channel networks’: characteristic, behaviours and their causes. Research report R-07-35. Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Bourke PJ (1987) Channelling of flow through fractures in rock. Paper presented at GEOVAL-87 international symposium, Swedish Nuclear Power Inspection (SKI), Stockholm

    Google Scholar 

  • Brown S, Caprihan A, Hardy H (1998) Experimental observation of fluid flow channels in a single fracture. J Geophys Res 103:5125–5132

    Article  Google Scholar 

  • Cacas MC, Ledoux E, Marsily G, Tillie B, Barbreau A, Durand E, Fuega B, Peaudecerf P (1990a) Modeling fracture flow with a stochastic fracture network: calibration and validation, 1—the flow model. Water Resour Res 26(3):479–489

    Google Scholar 

  • Cacas MC, Ledoux E, Marsily G, Barbreau A, Calmels P, Gaillard B, Margrita R (1990b) Modelling fracture flow with a stochastic discrete fracture network: calibration and validation, 2—the transport model. Water Resour Res 26(3):491–500

    Google Scholar 

  • Crawford J, Moreno L, Neretnieks I (2002) Determination of the flow-wetted surface in fractured media. J Contam Hydrol 61:361–369

    Article  Google Scholar 

  • De Dreuzy JR, Davy P, Bour O (2000) Percolation parameter and percolation-threshold estimates for three-dimensional random ellipses. Phys Rev E 62(5):5948

    Article  Google Scholar 

  • Dershowitz WS, Fidelibus C (1999) Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by boundary element method. Water Resour Res 35:2685–2691

    Article  Google Scholar 

  • Doe T (1991) Fractional dimension analysis of constant-pressure well tests. Soc Pet Eng J SPE Pg 22702:461–467

    Google Scholar 

  • Doe T, Geier J (1990) Interpretation of fracture system using well test data. Stripa project technical report 91–03. Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Follin S (2008) Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark, Report R-08-95. Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Frost LH, Scheier NW, Kozak ET, Davison CC (1992) Solute transport properties of a major fracture zone in granite. In: Hotzland H, Werner A (eds) Tracer hydrology. Balkema, Rotterdam, The Netherlands, pp 313–320

  • Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Geometrical percolation threshold of overlapping ellipsoids. Am Phys Soc Phys Rev E 52(1):819–828

    Article  Google Scholar 

  • Geier J (2014) Assessment of flows to deposition holes. SSM report 2014:05, Swedish Radiation Safety Authority, Stockholm

  • Geier J, Doe TW, Benabderraghmane A, Hassler L (1996) Generalized radial flow interpretation of well tests for the SITE-94, report 96:4. Swedish Nuclear Power Inspectorate-SKI, Stockholm

    Google Scholar 

  • Gylling B (1997) Development and applications of the channel network model for simulations of flow and solute transport in fractured rock. PhD Thesis, Royal Institute of Technology, Stockholm, Sweden

  • Gylling B, Moreno L, Neretnieks I, Birgersson L (1994) Analysis of LPT2 using the channel network model. International cooperation report ICR 94-05, Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • Gylling B, Biergersson L, Moreno L, Neretnieks I (1998) Analysis of a long-term pumping and tracer test using the channel network model. J Contam Hydrol 32:203–222

    Article  Google Scholar 

  • Gylling B, Moreno L, Neretnieks I (1999a) The channel network model-a tool for transport simulations in fractured media. Ground Water 37(3):367–375

    Article  Google Scholar 

  • Gylling B, Moreno L, Neretnieks I (1999b) SR97: alternative models project—channel network modelling of Aberg—performance assessment using CHAN3D. Report R-99-44, Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Hakami E, Larsson E (1996) Aperture measurements and flow experiments on a single natural fracture. Int J Rock Mech Min Sci Geomech Abstr 33(4):395–404

    Article  Google Scholar 

  • Hartley L, Roberts D (2012) Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites. Report R-12-04, Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Hartley L, Hunter F, Jackson P, McCarthy R (2006) Regional hydrogeological simulations using CONNECTFLOW, preliminary site description—Laxemar subarea, version 1.2. Report R-06- 23, Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Joyce S, Simpson T, Hartley L, Applegate D, Hoek J, Jackson P, Swan D, Marsic N, Follin S (2010) Groundwater flow modelling of periods with temperate climate conditions-Forsmark. Report R-09-20, Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • KBS-3 (1983) Final storage of spent nuclear fuel report by Swedish nuclear fuel supply Co SKBF (Now Svensk Karnbränslehantering AB, SKB). Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • Kuusela-Lahtinen A, Poteri A (2010) Interpretation of flow dimensions from constant pressure injection test. Working report 2010–35, Posiva Oy, Finland

    Google Scholar 

  • Kuusela-Lahtinen A, Niemi A, Luukkonen A (2002) Flow dimension as an indicator of hydraulic behavior in site characterisation of fractured rock. Ground Water 41(3):333–341

    Article  Google Scholar 

  • Larsson M, Niemi A, Tsang CF (2012) A study of flow-wetted surface area in a single fracture as a function of its hydraulic conductivity distribution. Water Resour Res 48:W01508. doi:10.1029/2011WR010686

    Article  Google Scholar 

  • Larsson M, Odén M, Niemi A, Neretnieks I, Tsang CF (2013) A new approach to account for fracture aperture variability when modeling solute transport in fracture networks. Water Resour Res 49(4):2241–2252

    Article  Google Scholar 

  • Liu L, Neretnieks I (2006) Coupling the near and far field models for performance assessment of repositories for spent nuclear fuel. AGU Fall meeting 2006, American Geophysical Union, Washington, DC

  • Liu L, Moreno L, Neretnieks I, Gylling B (2010) A safety assessment approach using coupled NEAR3D and CHAN3D-Forsmark. Report R10-69, Swedish Nuclear Fuel and Waste Management Co., Stockholm

    Google Scholar 

  • Long JCS, Remer JS, Wilson CR, Witherspoon PA (1982) Porous media equivalents for networks of discontinuous fractures. Water Resour Res 18(3):645–658

    Article  Google Scholar 

  • Moreno L, Neretnieks I (1993) Fluid flow and solute transport in a network of channels. J Contam Hydrol 14:163–192

    Article  Google Scholar 

  • Moreno L, Tsang CF (1994) Flow channelling in strongly heterogeneous porous media: a numerical study. Water Resour Res 30(5):1421–1430

    Article  Google Scholar 

  • Moreno L, Neretnieks I, Eriksen T (1985) Analysis of some laboratory tracer runs in natural fissures. Water Resour Res 21(7):951–958

    Article  Google Scholar 

  • Moreno L, Tsang YW, Tsang CF, Hale FV, Neretnieks I (1988) Flow and tracer transport in a single fracture: a stochastic model and its relation to some field observations. Water Resour Res 24(12):2033–3048

    Article  Google Scholar 

  • Moreno L, Tsang CF, Tsang YW, Neretnieks I (1990) Some anomalous features of flow and solute transport arising from fracture aperture variability. Water Resour Res 26:2377–2391

    Article  Google Scholar 

  • Mourzenko VV, Thovert JF, Adler PM (2004) Macroscopic permeability of three-dimensional fracture networks with power-law size distribution. Phys Rev E 69:066307

    Article  Google Scholar 

  • Mourzenko VV, Thovert JF, Adler PM (2005) Percolation of three-dimensional fracture networks with power-law size distribution. Phys Rev E 72:036103

    Article  Google Scholar 

  • Neretnieks I (1980) Diffusion in the rock matrix: an important factor in radionuclide retardation. J Geophys Res 85(B8):4379–4397

    Article  Google Scholar 

  • Neretnieks I (1987) Channelling effects in flow and transport in fractured rocks: some recent observations and models. Paper presented at GEOVAL-87 international symposium. Swedish Nuclear Power Inspection (SKI), Stockholm

    Google Scholar 

  • Neretnieks I (1993) Solute transport in fractured rock: applications to radionuclide waste repositories. In: Bear J, Tsang CF, de Marsily G (eds) Flow and contaminant transport in fractured rock. Academic, San Diego, pp 39–127

    Chapter  Google Scholar 

  • Neretnieks I (1994) Nuclear waste repositories in crystalline rock-an overview of nuclide transport mechanisms. Paper presented at MRS meeting on scientific basis for nuclear waste management. Mater. Res. Soc., Kyoto, Japan

  • Neretnieks I, Eriksen T, Tahiten P (1982) Tracer movement in a single fissure in granitic rock: some experimental results and their interpretation. Water Resour Res 18(4):849–858

    Article  Google Scholar 

  • Neuman SP (1987) Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts. In: Farmer IW, Daemen JJK, Desai CS, Glass CE, Neuman SP (eds) Rock mechanics: proceedings of the 28th US symposium. Balkema, Rotterdam, The Netherlands, pp 533–561

    Google Scholar 

  • Neuman S (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13:124–147

    Article  Google Scholar 

  • Novakowski KS, Evans GV, Lever DA, Raven KG (1985) A field example of measuring hydrodynamic dispersion in a single fracture. Water Resour Res 24(8):1165–1174

    Article  Google Scholar 

  • Posiva (2009a) Olkiluoto site description 2008: part 1. Posiva report 2009-01, Posiva Oy, Finland

  • Posiva (2009b) Olkiluoto site description 2008: part 2. Posiva Report 2009-01, Posiva Oy, Finland

  • Posiva (2012) Safety case for the disposal of spent nuclear fuel at Olkiluoto. Posiva Oy, Finland

  • Pyrak-Nolte LJ, Myer L, Cook NW, Witherspoon PA (1987) Hydraulic and mechanical properties of natural fractures in low permeability rock. In: Herget G, Vongpaisal S (eds) Proceedings of the Sixth International Congress of Rock Mechanics. Balkema, Rotterdam, The Netherlands, pp 225–231

  • Rasmuson A, Neretnieks I (1986) Radionuclide transport in fast channels in crystalline rock. Water Res Res 22(8):1247–1256

    Article  Google Scholar 

  • Raven KG, Novakowski KS, Lapcevic PA (1988) Interpretation of field tracer tests of a single fracture using a transient solute storage model. Water Resour Res 24(12):2019–2032

    Article  Google Scholar 

  • Retrock (2004) Treatment of geosphere retention phenomena in safety assessments, scientific basis of retention processes and their implementation in safety assessment models (WP2). Report R-04-48, Swedish Nuclear Fuel and Waste Management Co, Stockholm

  • Robinson PC (1984) Connectivity, flow and transport in network models of fractured media. PhD Thesis, St. Catherine’s College, Oxford University, Oxford, UK

  • Sahimi M (2011) Flow and transport in porous media and fractured rock: from classical methods to modern approaches. Wiley, New York

    Book  Google Scholar 

  • Sawada A, Uchida M, Shimo M, Yamamoto H, Takahara H, Doe T (2000) Non-sorbing tracer migration experiments in fractured rock at the Kamaishi Mine, northeast Japan. Dev Geotech Eng 84:83–104

    Article  Google Scholar 

  • Selroos JO, Walker DD, Anders S, Gylling B, Follin S (2002) Comparison of alternative modelling approaches for groundwater flow in fractured rock. J Hydrol 257:174–188

    Article  Google Scholar 

  • SKB (2008) Site description of Forsmark at completion of the site investigation phase, SDM-Site Forsmark. Technical report TR-08-05, SKB, Stockholm

  • Stephens MB, Follin S, Petersson J, Isaksson H, Juhlin C, Simeonov A (2015) Review of the deterministic modelling of deformation zones and fracture domains at the site proposed for a spent nuclear fuel repository, Sweden, and consequences of structural anisotropy. Tectonophysics 653:68–94

    Article  Google Scholar 

  • Thompson P, Simmons G (1995) Underground laboratories: a site characterisation tool for nuclear fuel waste disposal in Canada. Proceedings of the Proceedings of the Sixth Annual International Conference on High Level Radioactive Waste Management. American Nuclear Society, Las Vegas, NV

  • Tsang CF (2005) Is current hydrogeologic research addressing long-term predictions? Ground Water 43(3):296–300

    Article  Google Scholar 

  • Tsang CF, Neretnieks I (1998) Flow channelling in heterogeneous fractured rocks. Rev Geophys 36(2):275–298

    Article  Google Scholar 

  • Tsang YW, Tsang CF (1987) Channel model of flow through fractured media. Water Resour Res 23(3):467–479

    Article  Google Scholar 

  • Tsang YW, Tsang CF (1989) Flow channelling in a single fracture as a two-dimensional strongly heterogeneous permeable medium. Water Resour Res 25(9):2076–2080

    Article  Google Scholar 

  • Tsang YW, Tsang CF, Neretnieks I, Moreno L (1988) Flow and tracer transport in fractured media: a variable aperture channel model and its properties. Water Resour Res 24(12):2049–2060

    Article  Google Scholar 

  • Tsang CF, Tsang YW, Hale FV (1991) Tracer transport in fractures: analysis of field data based on a variable-aperture channel model. Water Resour Res 27(12):3095–3106

    Article  Google Scholar 

  • Tsang YW, Tsang CF, Hale FV, Dverstorp B (1996) Tracer transport in a stochastic continuum model of fractured media. Water Resour Res 32:3077–3092

    Article  Google Scholar 

  • Tsang CF, Doughty C, Uchida M (2008) Simple model representations of transport in a complex fracture and their effects on long-term predictions. Water Resour Res 44(8). doi:10.1029/2007WR006632

  • Tsang CF, Neretnieks I, Tsang Y (2015) Hydrologic issues associated with nuclear waste repositories. Water Resour Res 51. doi:10.1002/2015WR017641

  • Walker D, Roberts R (2003) Flow dimensions corresponding to hydrogeological conditions. Water Res Res 39(12):1349. doi:10.1029/2002WR00151

    Article  Google Scholar 

  • Walker D, Cello P, Valocci A, Loftis B (2006) Flow dimensions corresponding to stochastic models of heterogeneous transmissivity. Geophys Res Lett 33(7):L07407. doi:10.1029/2006GL025695

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Swedish Radiation Safety Authority (SSM), for providing financial support to research reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Figueiredo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, B., Tsang, CF., Niemi, A. et al. Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations. Hydrogeol J 24, 1607–1622 (2016). https://doi.org/10.1007/s10040-016-1415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1415-x

Keywords

Navigation