Skip to main content

Advertisement

Log in

An integrated hydrogeological study to support sustainable development and management of groundwater resources: a case study from the Precambrian Crystalline Province, India

Etude hydrogéologique intégrée en appui au développement durable et à la gestion des ressources en eau souterraine: étude de cas dans la Province Cristallline Précambrienne, Inde

Un estudio hidrogeológico integrado para el apoyo del desarrollo y la gestión sostenible de los recursos de agua subterránea: caso de estudio de la Provincia Precámbrica Cristalina, India

支撑地下水资源可持续开发和管理的水文地质综合研究:印度前寒武纪结晶岩地区的一个研究实例

Um estudo hidrogeológico integrado de apoio ao desenvolvimento sustentável e gestão dos recursos hídricos subterrâneos: um estudo de caso da Província Pré-Cambriana Cristalina, Índia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30–85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 concentration is high in shallow irrigation wells, and F is high in deeper wells. Positive correlation is observed between F and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.

Résumé

Le développement rapide de l’agriculture, de l’industrie et de l’urbanisation a provoqué une exploitation incontrôlée de l’eau souterraine, conduisant à une pression sévère sur la ressource en eau souterraine des aquifères de socle en Inde. Face à l’épuisement des ressources des aquifères superficiels, les utilisateurs ont développé les ressources d’aquifères plus profonds, ce qui s’est révélé être contreproductif sur les plans économique et écologique. Une étude hydrogéologique intégrée a été menée sur le bassin versant semi-aride du Madharam (95 km2), dans l’Etat du Telangana, à soubassement granitique. Les résultats révèlent deux systèmes aquifères: une zone altérée (30 m de profondeur au maximum) et une zone fracturée (30–85 m de profondeur). La zone altérée est non saturée jusqu’ à son extrême limite, forçant les utilisateurs à exploiter les eaux souterraines d’aquifères plus profonds. Les classes de transmissivité, du débit spécifique et des taux d’infiltration les plus élevées ont été observées dans la zone de recharge, les classes moyennes dans la zone intermédiaire, et les plus basses dans la zone de décharge. Cela est dû à la forte épaisseur de la zone altérée et à une teneur en sable plus élevée dans la zone de recharge que dans la zone de décharge, où le résidu d’altération contient plus d’argile. La teneur en NO3 est élevée dans les puits d’irrigation superficiels et le F dans les puits plus profonds. Une corrélation positive est observée entre F et la profondeur dans la zone de recharge et à proximité. Environ 50 % des échantillons d’eau souterraine sont impropres à la consommation humaine et la majorité des échantillons de puits d’irrigation sont classés comme à risque moyen à fort pour la croissance des plantes. Des mesures sont recommandées à la fois sur le plan de la ressource et sur le plan de la demande, en vue du développement durable et de la gestion de cette ressource en eau souterraine. Les résultats peuvent être extrapolés à d’autres environnements similaires.

Resumen

La rápida expansión de la agricultura, la industria y la urbanización ha provocado un desarrollo no planificado de las aguas subterráneas que conduce a una severa presión sobre los recursos de agua subterránea en las rocas cristalinas de la India. Con el agotamiento de los recursos de los acuíferos someros, los usuarios finales han desarrollado los recursos de los acuíferos más profundos, que han demostrado ser económica y ecológicamente contraproducentes. Se ha llevado a cabo un estudio hidrogeológico integrado en la cuenca semiárida de Madharam (95 km2) en el Estado de Telangana, la cual presenta una base de granitos que la subyace. Los resultados revelan dos sistemas acuíferos: una zona meteorizada (máximo 30 m de profundidad) y una zona de fractura (30 a 85 m de profundidad). La zona meteorizada es no saturada hasta su máxima extensión, obligando a los usuarios a aprovechar el agua subterránea de los acuíferos más profundos. En la zona de recarga se observan los órdenes más altos de transmisividad, de rendimiento específico y de infiltración; órdenes moderados se observan en una zona intermedia, y los órdenes menores en la zona de descarga. Esto es debido al gran espesor de la zona meteorizada y a un más alto contenido de arena en la zona de recarga que en la zona de descarga, donde el residuo meteorizado contiene más arcilla. La concentración de NO3 es alta en los pozos de riego someros y el F es alto en los pozos profundos. Se observa una correlación positiva entre el F y la profundidad de la zona de recarga y sus proximidades. Casi el 50 % de las muestras de agua subterránea no son aptas para el consumo humano y la mayoría de las muestras de pozos de riego se clasifican como de riesgo medio a alto para el crecimiento vegetal. Se recomiendan medidas tanto un punto de vista de la provisión como de la demanda para un desarrollo y gestión sostenible de este recurso de agua subterránea. Los hallazgos pueden ser aplicados en otros ambientes similares.

摘要

农业、工业和城市化的快速发展导致了地下水的无序开发,对印度结晶岩地区地下水资源造成了巨大的压力。随着浅层资源的耗尽,终端用户从较深含水层开采,而这样从经济上和生态上证明事与愿反。在Telangana邦半干旱Madharam流域(95 km2)进行了综合水文地质研究,这一地区分布着花岗岩。结果显示有两个含水层系统:风化带含水层系统(最厚30米深)和断裂带含水层系统(30–85 米深)。风化带绝大部分为非饱和状态,促使用水户从较深含水层取水。在补给带观测到导水系数、单位涌水量和入渗率为较高数量级;在过渡带为中等数量级,在排泄带为较低的数量级。这是由于风化带很厚以及补给带比排泄带含沙量高造成的,在排泄带风化的残留物含更多的粘土。在浅的灌溉井中NO3 含量很高,在较深的井中F 含量高。发现F 和补给带及其附近的深度之间为正相关。几乎50%的地下水样品不适合人类饮用,大多数灌溉井样品对植物生长为中到高风险。对于这样的地下水资源可持续开发和管理,提出了供方和需方的措施。研究成果可应用到其它类似的环境中。

Resumo

A rápida expansão da agricultura, indústrias e urbanização desencadeou o aproveitamento não planejado das águas subterrâneas, conduzindo a um grave stress sobre os recursos hídricos subterrâneos em rochas cristalinas da Índia. Com o esgotamento dos recursos provenientes de aquíferos rasos, os usuários finais têm aproveitado recursos a partir de aquíferos mais profundos, o que provou ser contraproducente econômica e ecologicamente. Um estudo hidrogeológico integrado foi realizado na microbacia semiárida de Madharam (95 km2) no estado de Telangana, que é sustentada por granitos. Os resultados revelam dois sistemas aquíferos: uma zona de intemperismo (30 m de profundidade máxima) e uma zona de fraturas (30–85 m de profundidade). A zona de intemperismo é insaturada em sua extensão máxima, forçando os usuários a explorarem as águas subterrâneas de aquíferos mais profundos. Condições mais elevadas de transmissibilidade, de rendimento específico e de infiltração específica são observadas na zona de recarga; condições moderadas são observadas em uma zona intermediária, e condições mais baixas, na zona de descarga. Isso ocorre devido à grande espessura da zona de intemperismo e ao teor de areia ser maior na zona de recarga quando comparado à zona de descarga, onde o resíduo intemperizado contém mais argila. A concentração de NO3 é alta em poços rasos de irrigação e a concentração de F é alta em poços profundos. Uma correlação positiva é observada entre o F e a profundidade na zona de recarga e suas proximidades. Aproximadamente 50 % das amostras de águas subterrâneas são impróprias para consumo humano e a maioria das amostras de poços de irrigação é classificada entre médio e alto risco para o crescimento das plantas. Ambas as medidas relacionadas à oferta e à procura são recomendadas para o desenvolvimento sustentável e para a gestão dos recursos hídricos subterrâneos. Os resultados podem ser redimensionados para ambientes similares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • APWALTA Act (2002) Andhra Pradesh Acts, Ordinance and Regulations, Act no. 10 of 2002. AP Gazette, Part IV-B Extraordinary, Published by Authority, 23 pp

  • APHA (1998) Standard methods for the examination of water and waste water, 19th edn. American Public Health Association, Washington, DC, pp 10–161

  • ASTM (D3385-09) (2003) Standard test method for infiltration rate of soils in field using double-ring infiltrometer. Specification for concrete aggregates, ASTM, West Conshohocken. PA. doi: 10.1520/C0033-03. www.astm.org. Accessed 25 Oct 2015

  • Ballukraya PN, Sakthivadivel R (2002) Over-exploitation and artificial recharging of hard rock aquifers of South India: issues and options. IWMI-Tata Water Policy Research program, Annual Partners Meeting, Gujarat, India, 2002, 14 pp

  • BIS (2003) Drinking water-specification IS: 10500; 1991, 2.1 edn. (1993–01). Bureau of Indian Standards, New Delhi, 11 pp

  • Boulton NS (1963) Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. Proc ICE 26(3):469–482

  • Burjia JS, Romani S (2003) Ground water development: present scenario and future needs. Indian J Public Adm. XLIX:301–307

  • CGWB (1975) Hydrogeology of 56 G (east) and 56 K (west), India. Technical report, Indo Canadian project, CGWB, New Delhi, 24 pp

  • CGWB (1998) Detailed guidelines for implementing the groundwater estimation methodology: 1997. CGWB, New Delhi, 219 pp

  • CGWB (2007) Manual on artificial recharge of ground water. Tech. Rep. CGWB, New Delhi, 185 pp

  • CGWB (2013) Ground water exploration in Andhra Pradesh. Central Groundwater Board, Hyderabad, Gov of India, New Delhi, pp 123–126

  • Clark L (1985) Groundwater abstraction from basement complex areas of Africa. Q J Eng Geol 18:234

    Article  Google Scholar 

  • Cooper HH Jr, Jacob CE (1946) A generalized graphical method for evaluation formation constants and summarizing well-field history. Trans Am Geophys Union 27(4):526–534. doi:10.1029/TR027i004p00526

  • Foster S, Chilton J, Moench M, Cardy F, Schiffler M (2008) Groundwater in rural development: facing the challenges of supply and resource sustainability. Water P-notes, no. 19. World Bank, Washington, DC. http://documents.worldbank.org/curated/en/2008/10/10030584/groundwater-rural-development-facing-challenges-supply-resource-sustainability. Accessed November 2015

  • Free GR, Browning GM, Musgrave GW (1940) Relative infiltration and related physical characteristics of certain soils. Tech Bull no. 168543, USDA, Washington, DC

  • Gandhi VP, Namboodari NV (2009) Groundwater irrigation in India: gains, costs and risks. W.P. no. 2009-03-08, Indian Institute of Management, Ahmadabad, India, 38 pp

  • GOIMOWR (2002) National water policy. Gov. of India, Ministry of Water Resources, New Delhi, 10 pp

  • Govardhan Das SV, Burke J (2013) Smallholders and sustainable wells: a retrospect—participatory groundwater management in Andhra Pradesh (India). FAO, Rome. 172 pp

  • Jacks G, Bhattacharya P, Chaudhary V, Singh KP (2005) Controls on the genesis of some high-fluoride groundwaters in India. Appl Geochem 20(2):221–228

    Article  Google Scholar 

  • Johnson AI (1963) A field method for measurement of infiltration. US Government Printing Office, Washington, DC

  • Karanth KR (1987) Ground water assessment: development and management. Tata McGraw-Hill, New Delhi, 720 pp

  • Kelly W, Mares S (eds) (1993) Applied geophysics in hydrogeological and engineering practices. Elsevier, New York, 292 pp

    Google Scholar 

  • Madhnure P (2014) Groundwater exploration in Madharam Watershed, Mahabubnagar District, Andhra Pradesh. CGWB, Ministry of Water Resources, River Development and Ganga Rejuvenation, Gov. of India, New Delhi, 198 pp

  • Madhnure P, Sirsikar DY, Tiwari AN, Ranjan B, Malpe DB (2007) Occurrence of fluoride in the groundwater’s of Pandharkawada area, Yavatmal district, Maharashtra. India Curr Sci 95(5):675–679

    Google Scholar 

  • Murthy DSS, Murthy DVR (1974) A study of high fluoride bearing water around Nalgonda town, Nalgonda district, A.P. Indian Academy of Geological Sciences, Proc. Symp. on Fluorosis, Hyderabad, October 1974, pp 311–315

  • NREGA (2005) The National Rural Employment Guarantee Act-2005. The Gazette of India, Extraordinary, Part II, Section I, no. 48. Ministry of Law and Justice, Gov. of India, New Delhi, 16 pp

  • Orellana E, Mooney HM (1966) Master tables and curves for vertical electrical sounding over layered structures. Interciencia, Madrid, 150 pp

  • Parasnis DS (1962) Principles of applied geophysics. GFF 84(4):534–535, doi:10.1080/11035896209447317

  • Ramamohan Rao NV, Rao N, Surya Prakash Rao K, Schuiling RD (1993) Fluorine distribution in waters of Nalgonda District, Andhra Pradesh, India. Environ Geol 21(1–2):84–89. doi:10.1007/BF00775055

    Article  Google Scholar 

  • Remson I, Lang SM (1955) A pumping test methods for the determination of specific yield. EOS Trans Am Geophys Union 36(2):321–325. doi:10.1029/TR036i002p00321

    Article  Google Scholar 

  • Saxena V, Ahmed S (2001) Dissolution of fluoride in groundwater: a water–rock interaction study. Environ Geol J 40(9):1084–1087. doi:10.1007/s002540100290

    Article  Google Scholar 

  • Symons GJ (1891) A contribution to the history of rain gauges. Q J R Meteorol Soc 17(79):127–142. doi:10.1002/qj.4970177901

    Article  Google Scholar 

  • Theis CV (1935) Relationship between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage. EOS Trans Am Geophys Union 16(2):519–524. doi:10.1029/TR016i002p00519

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geog Rev 38(1948):55–94

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Drexel Institute of Technology, Centertown PA, 104 pp

  • Wilcox LV (1955) Classification and use of irrigation waters. USDA Circ. no. 969, USDA, Washington, DC

  • Wright EP, Burgess WG (eds) (1992) The hydrogeology of crystalline basement aquifers in Africa. Geol Soc Spec Pub 66:1–27

Download references

Acknowledgements

The authors thank Shri K. B. Biswas, Chairman, and Sri. K. C. Naik, Member (TT and WQ), of the Central Ground Water Board, Govt. of India, for according permission to submit the paper and S/Shri G. D. Ojha, ex Regional Director, and G. Sudarshan, Regional Director (SWR) of CGWB, for encouragement. The authors acknowledge the inputs given by Dr. K. Seshadri, scientist of NRSC, Govt. of India, and Shri AVSS Anand, hydrogeologist on landform analysis and groundwater resource estimation, respectively. The work/analysis carried out by S/Shri P. Sudhakar, hydrometeorologist, K. Ramesh Reddy, Ashok Patale (late) and Pradeep Kumar, geophysicists, and M. Bhaskar Reddy and K. Maruthi Prasad, hydrochemists, along with the executive engineer and his drilling crew of CGWB, are duly acknowledged. The views expressed by the authors are not necessarily that of CGWB to which they belong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pandith Madhnure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhnure, P., Peddi, N.R. & Allani, D.R. An integrated hydrogeological study to support sustainable development and management of groundwater resources: a case study from the Precambrian Crystalline Province, India. Hydrogeol J 24, 475–487 (2016). https://doi.org/10.1007/s10040-015-1342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1342-2

Keywords

Navigation