Skip to main content
Log in

Discrete element study of stresses and deformation on gravity retaining wall under static loading

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The study of gravity retaining wall supporting cohesionless soil is performed using the discrete element software Particle Flow Code (PFC), with emphasis on three-dimensional analysis at the grain scale, covering the transition from the initial state to the active state. The soil particles are represented by spherical balls and the rolling resistance linear contact model is used to include the shape effect. The rigid balls are connected by linear parallel bond contact model with a specified strength and stiffness to replicate the physical characteristics of retaining wall. The domain size is reduced by using high g criteria and scaling laws to enhance computational efficiency. The earth pressure coefficient obtained from the present study is compared with the existing analytical and experimental solutions. It is concluded that widely used Coulomb and Rankine methods underestimate the active earth pressure. The total earth thrust acting on the gravity wall is 67.3 kN/m acting at 0.301H above the wall base. The initial state shows a decrease in average coordination number from 5.0 to 3.3 at wall top indicating the debonding of grains and simultaneous decrease in density. In addition, the force chain distribution, porosity, lateral displacement, and axial displacement are investigated. A correlation between the earth pressure coefficient and lateral displacement is also established. The discrete analysis provided valuable insights into the particle-level mechanisms underlying the overall behavior of the retaining wall, contributing to a better understanding of its continuum response.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

CN:

Coordination number

c p :

Parallel bond compressive strength at contact

E c :

Young’s modulus at contact

E cp :

Young’s modulus of parallel bond at contact

e :

Void ratio

F n :

Normal stress at contact

F smax :

Maximum allowable tangential stress at contact

H :

Wall height

k n :

Normal stiffness at contact

k s :

Tangential stiffness at contact

k :

Stiffness ratio

k p :

Parallel bond stiffness ratio

K :

Earth pressure coefficient

K a :

Active earth pressure coefficient

K o :

Earth pressure coefficient at rest

p x :

Lateral earth pressure

N :

Scale factor

N c :

Number of contacts

N p :

Number of particles

n :

Porosity

U n :

Normal displacement at contacts

ρ :

Density of grains

σ cp :

Parallel bond tensile strength

λ:

Radius multiplier factor

μ :

Coefficient of friction

μ r :

Rolling friction coefficient

δ :

Interface friction angle

δ x :

Lateral displacement of wall

References

  1. Coulomb, C.A.: Essai sur une application des regles de maximis et minimis a quelques problemes de statique relatifs a 1’architecture. Mémoires. Mathématique. Phys. l’Académie 7, 1776 (2023)

    Google Scholar 

  2. Rankine, W.J.M.: On the stability of loose earth. Philos. Trans. R. Soc. London 147, 9–27 (1857)

    Article  ADS  Google Scholar 

  3. Fang, Y.-S., Ishibashi, I.: Static earth pressures with various wall movements. J. Geotech. Eng. 112(3), 317–333 (1986)

    Article  Google Scholar 

  4. Sherif, M.A., Fang, Y.S., Sherif, R.I.: Ka and Ko behind rotating and non-yielding walls. J. Geotech. Eng. 110(1), 41–56 (1984)

    Article  Google Scholar 

  5. Tsagareli, Z.V.: Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface. Soil Mech. Found. Eng. 2(4), 197–200 (1965). https://doi.org/10.1007/BF01706095

    Article  Google Scholar 

  6. Bang, S.: Active earth pressure behind retaining walls. J. Geotech. Eng. 111(3), 407–412 (1985)

    Article  Google Scholar 

  7. Chen, J.-J., Li, M.-G., Wang, J.-H.: Active earth pressure against rigid retaining walls subjected to confined cohesionless soil. Int. J. Geomech. 17(6), 1–6 (2017). https://doi.org/10.1061/(asce)gm.1943-5622.0000855

    Article  Google Scholar 

  8. Li, J.P., Wang, M.: Simplified method for calculating active earth pressure on rigid retaining walls considering the arching effect under translational mode. Int. J. Geomech. 14(2), 282–290 (2014). https://doi.org/10.1061/(asce)gm.1943-5622.0000313

    Article  Google Scholar 

  9. Paik, K.H., Salgado, R.: Estimation of active earth pressure against rigid retaining walls considering arching effects. Geotechnique 53(7), 643–653 (2003). https://doi.org/10.1680/geot.2003.53.7.643

    Article  Google Scholar 

  10. Terzaghi, K.: Large retaining-wall tests, I. Pressure of dry sand. Engineering News-Record. 112, 136-140, 259-262, 316-318, 403-406, 503-508 (1934)

  11. Khosravi, M.H., Pipatpongsa, T., Takemura, J.: Experimental analysis of earth pressure against rigid retaining walls under translation mode. Geotechnique 63(12), 1020–1028 (2013). https://doi.org/10.1680/geot.12.P.021

    Article  Google Scholar 

  12. Sherif, M.A., Ishibashi, I., Do Lee, C.: Earth pressures against rigid retaining walls. J. Geotech. Eng. Div. 108(5), 679–695 (1982)

    Article  Google Scholar 

  13. Terzaghi, K.: A fundamental fallacy in earth pressure computations. Journal of the Boston Society of Civil Engineers. 23, 71–88 (1936)

  14. Xu, L., Biao Chen, H., Quan Chen, F., Jian Lin, Y., Lin, C.: An experimental study of the active failure mechanism of narrow backfills installed behind rigid retaining walls conducted using Geo-PIV. Acta Geotech. 17(9), 4051–4068 (2022). https://doi.org/10.1007/s11440-021-01438-9

    Article  Google Scholar 

  15. Clough, G.W., Duncan, J.M.: Finite element analyses of retaining wall behavior. J. Soil Mech. Found. Div. 97(12), 1657–1673 (1971)

    Article  Google Scholar 

  16. Fan, C.C., Fang, Y.S.: Numerical solution of active earth pressures on rigid retaining walls built near rock faces. Comput. Geotech. 37(7–8), 1023–1029 (2010). https://doi.org/10.1016/j.compgeo.2010.08.004

    Article  Google Scholar 

  17. Matsuzawa, H., Hazarika, H.: Analyses of active earth pressure against rigid retaining wall subjected to different modes of movement. Soils Found. 36(3), 51–65 (1996)

    Article  Google Scholar 

  18. Potts, D.M., Fourie, A.B.: A numerical study of the effects of wall deformation on earth pressures. Int. J. Numer. Anal. methods Geomech. 10(4), 383–405 (1986)

    Article  Google Scholar 

  19. Michalowski, R.L.: Coefficient of Earth Pressure at Rest. J. Geotech. Geoenvironmental Eng. 131(11), 1429–1433 (2005). https://doi.org/10.1061/(asce)1090-0241(2005)131:11(1429)

    Article  Google Scholar 

  20. Jaky, J.: The coefficient of earth pressure at rest. Journal of the Society of Hungarian Architects and Engineering. 355–358 (1944)

  21. Lee, J., Yun, T.S., Lee, D., Lee, J.: Assessment of Ko correlation to strength for granular materials. Soils Found. 53(4), 584–595 (2013). https://doi.org/10.1016/j.sandf.2013.06.009

    Article  Google Scholar 

  22. Wroth, C.P.: General theories of earth pressure and deformation. Proc 5th Eur Conf Soil Mech Found Eng 2, 33–52 (1972)

    Google Scholar 

  23. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1980.30.3.331

    Article  Google Scholar 

  24. Sizkow, S.F., El Shamy, U.: Discrete-element method simulations of the seismic response of flexible retaining walls. J. Geotech. Geoenvironmental Eng. 147(2) (2021). https://doi.org/10.1061/(asce)gt.1943-5606.0002428

  25. Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul. Matter 11(4), 221–236 (2009). https://doi.org/10.1007/s10035-009-0138-2

    Article  Google Scholar 

  26. Cundall, P.A.: A discontinuous future for numerical modelling in geomechanics. Proc. Inst. Civ. Eng. Geotech. Eng. 149(1), 41–47 (2001). https://doi.org/10.1680/geng.2001.149.1.41

    Article  Google Scholar 

  27. Itasca Consulting Group Inc: Particle flow code in 2D, version 3.0, documentation. U.S. Minneapolis (2002)

  28.  Li, M.G., Chen, J.J., Wang, J.H.: Arching effect on lateral pressure of confined granular material: numerical and theoretical analysis. Granul. Matter 19(2) (2017). https://doi.org/10.1007/s10035-017-0700-2

  29. Gu, X., Hu, J., Huang, M.: Ko of granular soils: a particulate approach. Granul. Matter 17(6), 703–715 (2015). https://doi.org/10.1007/s10035-015-0588-7

    Article  Google Scholar 

  30. Gu, X., Hu, J., Huang, M., Yang, J.: Discrete element analysis of the ko of granular soil and its relation to small strain shear stiffness. Int. J. Geomech. 18(3), 3–7 (2018). https://doi.org/10.1061/(asce)gm.1943-5622.0001102

    Article  Google Scholar 

  31. Zhang, T., Wang, S., Yu, S., Sun, Z., Fang, C., Wang, S.: Microscopic mechanical analysis of K 0 of granular soils with particle size distribution and rolling resistance effects. Comput. Part. Mech. (2023). https://doi.org/10.1007/s40571-023-00669-9

    Article  Google Scholar 

  32. Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005). https://doi.org/10.1016/j.compgeo.2005.05.001

    Article  Google Scholar 

  33. Lopera Perez, J.C., Kwok, C.Y., O’Sullivan, C., Huang, X., Hanley, K.J.: Numerical study of one-dimensional compression in granular materials. Geotech. Lett. 5(3), 96 (2015)

    Article  Google Scholar 

  34. Chen, H., Zhao, S., Zhao, J., Zhou, X.: The microscopic origin of K0 on granular soils: the role of particle shape. Acta Geotech. 16(7), 2089–2109 (2021). https://doi.org/10.1007/s11440-021-01161-5

    Article  Google Scholar 

  35. Zhao, J., Zhao, S., Luding, S.: The role of particle shape in computational modelling of granular matter. Nat. Rev. Phys. 5(9), 505–525 (2023)

    Article  Google Scholar 

  36. Qian, J., Zhou, C., Li, W., Gu, X., Qin, Y., Xie, L.: Investigation on the influencing factors of K0 of granular materials using discrete element modelling. Appl. Sci. 12(6) (2022). https://doi.org/10.3390/app12062899

  37. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003). https://doi.org/10.1016/S0266-352X(03)00064-8

    Article  Google Scholar 

  38. Chang, C.S., Chao, S.-J.: Discrete element analysis for active and passive pressure distribution on retaining wall. Comput Geotech. 16, 291–310 (1994)

  39. Jiang, M., He, J., Wang, J., Liu, F., Zhang, W.: Distinct simulation of earth pressure against a rigid retaining wall considering inter-particle rolling resistance in sandy backfill. Granul. Matter 16(5), 797–814 (2014). https://doi.org/10.1007/s10035-014-0515-3

    Article  Google Scholar 

  40. Oetomo, J.J., Vincens, E., Dedecker, F., Morel, J.C.: Modeling the 2D behavior of dry-stone retaining walls by a fully discrete element method. Int. J. Numer. Anal. Methods Geomech. 40(7), 1099–1120 (2016). https://doi.org/10.1002/nag.2480

    Article  Google Scholar 

  41. Khosravi, M.H., Azad, F.H., Bahaaddini, M., Pipatpongsa, T.: DEM analysis of backfilled walls subjected to active translation mode. Int. J. Min. Geo-Engineering 51, 191–197 (2017)

    Google Scholar 

  42. Jiang, M., Niu, M., Zhang, W.: DEM analysis of passive failure in structured sand ground behind a retaining wall. Granul. Matter. 24(2), 2022. https://doi.org/10.1007/s10035-022-01220-y

  43. Ma, K., Wang, L., Long, L., Peng, Y., He, G.: “Discrete element analysis of structural characteristics of stepped reinforced soil retaining wall”, Geomatics. Nat. Hazards Risk 11(1), 1447–1465 (2020). https://doi.org/10.1080/19475705.2020.1797907

    Article  Google Scholar 

  44. Yang, M., Deng, B. Simplified method for calculating the active earth pressure on retaining walls of narrow backfill width based on dem analysis. Adv. Civ. Eng. 2019, (2019). https://doi.org/10.1155/2019/1507825

  45. Yang, M., Gong, H., Deng, B.: DEM analysis and simplified calculation of passive earth pressure on retaining walls backfilled with sand considering strain-softening behavior. Geofluids 2022 (2022). https://doi.org/10.1155/2022/1880502

  46. Nadukuru, S.S., Michalowski, R.L.: Arching in Distribution of Active Load on Retaining Walls. J. Geotech. Geoenvironmental Eng. 138(5), 575–584 (2012). https://doi.org/10.1061/(asce)gt.1943-5606.0000617

    Article  Google Scholar 

  47. Widuliński, L., Tejchman, J., Kozicki, J., Leśniewska, D.: Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall. Int. J. Solids Struct. 48, 1191–1209 (2011). https://doi.org/10.1016/j.ijsolstr.2011.01.005

    Article  Google Scholar 

  48. Jia, M., Yang, Y., Liu, B., Wu, S.: PFC/FLAC coupled simulation of dynamic compaction in granular soils. Granul. Matter 20 (2018). https://doi.org/10.1007/s10035-018-0841-y

  49. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004). https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  50. Rothenburg, L., Bathurst, R.J.: Micromechanical features of granular assemblies with planar elliptical particles. Geotechnique. 42(1), 79–95 (1992)

  51. Liu, Y., Liu, H., Mao, H.: The influence of rolling resistance on the stress-dilatancy and fabric anisotropy of granular materials. Granul. Matter 20(1) (2018). https://doi.org/10.1007/s10035-017-0780-z

  52. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by dem. J. Eng. Mech. 124(3), 285–292 (1998)

    Article  Google Scholar 

  53. Yin, Z.Y., Wang, P., Zhang, F.: Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method. Tunn. Undergr. Sp. Technol. 100 (2020). https://doi.org/10.1016/j.tust.2020.103394

  54. Tamás, K., Kovács, Á., Jóri, I.J.: The evaluation of the parallel bond’s properties in DEM modeling of soils. Period. Polytech. Mech. Eng. 60(1), 21–31 (2016). https://doi.org/10.3311/PPme.8427

    Article  Google Scholar 

  55. Yang, B., Jiao, Y., Lei, S.: A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng. Comput. 23(6), 607–631 (2006). https://doi.org/10.1108/02644400610680333

    Article  Google Scholar 

  56. Wu, H., Dai, B., Zhao, G., Chen, Y., Tian, Y.: A novel method of calibrating micro-scale parameters of PFC model and experimental validation. Appl. Sci. 10(9), 1–20 (2020). https://doi.org/10.3390/app10093221

    Article  Google Scholar 

  57. Yang, X., Kulatilake, P.H.S.W., Jing, H., Yang, S.: Numerical simulation of a jointed rock block mechanical behavior adjacent to an underground excavation and comparison with physical model test results. Tunn. Undergr. Sp. Technol. 50, 129–142 (2015). https://doi.org/10.1016/j.tust.2015.07.006

    Article  Google Scholar 

  58. Haeri, H., Sarfarazi, V., Zhu, Z., Lazemi, H.A.: Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D. Struct. Eng. Mech. 67(5), 505–516 (2018). https://doi.org/10.12989/sem.2018.67.5.505

    Article  Google Scholar 

  59. Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1–2), 320–331 (2009). https://doi.org/10.1016/j.compgeo.2008.02.003

    Article  Google Scholar 

  60. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials. Granul. Matter 12(5), 527–541 (2010). https://doi.org/10.1007/s10035-010-0211-x

    Article  Google Scholar 

  61. Yoon, J.: Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. Sci. 44(6), 871–889 (2007). https://doi.org/10.1016/j.ijrmms.2007.01.004

    Article  Google Scholar 

  62. Bischoff, P.H., Perry, S.H.: Impact behavior of plain concrete loaded in uniaxial compression. J. Eng. Mech. 121(6), 685–693 (1995). https://doi.org/10.1061/(asce)0733-9399(1995)121:6(685)

    Article  Google Scholar 

  63. ASTM Standard (D7181-11): Method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken, PA (2011)

  64. Oda, M.:  Deformation mechanism of sand in triaxial compression tests. Soils Found 12(4), 45–63 (1972). Available: http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/

  65. Das, S.K., Das, A.: Influence of quasi-static loading rates on crushable granular materials: A DEM analysis. Powder Technol. 344, 393–403 (2019). https://doi.org/10.1016/j.powtec.2018.12.024

    Article  Google Scholar 

  66. Anderson, D.G., Martin, G.R., Lam, I.P., Wang, J.N.: Seismic analysis and design of retaining walls, buried structures, slopes, and embankments. National Cooperative highway research program Report 611. Transportation Research Board, Washington, D.C. (2008)

  67. Tanyu, B.F., Sabatini, P.J., Berg, R.R.: Earth retaining structures. Technical Report FHWA-NHI-07–071. (2008). https://doi.org/10.1016/b978-075068764-5.50016-7

  68. Patsevich, A, El Shamy, U.: Discrete-element method study of the seismic response of gravity retaining walls. Int. J. Geomech. 20(11) (2020). https://doi.org/10.1061/(asce)gm.1943-5622.0001837

  69. Feng, Y.T., Owen, D.R.J.: Discrete element modelling of large scale particle systems—I: exact scaling laws. Comput. Part. Mech. 1(2), 159–168 (2014). https://doi.org/10.1007/s40571-014-0010-y

    Article  Google Scholar 

  70. Wang, Y., Mora, P., Liang, Y.: Calibration of discrete element modeling: Scaling laws and dimensionless analysis. Particuology 62, 55–62 (2022). https://doi.org/10.1016/j.partic.2021.03.020

    Article  Google Scholar 

  71. Itasca Consulting Group Inc: PFC - Particle flow code 3D, Version 7.0, Documentation, U.S, Minneapolis (2021)

  72. Clough, G.W., Duncan, J.M.: Earth pressures. In: Fang, H.Y. (ed.) Foundation engineering handbook, 2nd edn, pp. 223–235. Chapman and Hall, New York (1991)

  73. Mei, G., Chen, Q., Song, L.: Model for predicting displacement-dependent lateral earth pressure. Can. Geotech. J. 46(8), 969–975 (2009). https://doi.org/10.1139/T09-040

    Article  Google Scholar 

  74. Hazarika, H., Matsuzawa, H.: Wall Displacement Modes Dependent Active Earth Pressure Analyses Using Smeared Shear Band Method with Two Bands. Comput. Geotech. 19(3), 193–219 (1996). https://doi.org/10.1016/0266-352X(96)00003-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prerna Singh.

Ethics declarations

Competing interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Chakraborty, T. & Mahajan, P. Discrete element study of stresses and deformation on gravity retaining wall under static loading. Granular Matter 26, 48 (2024). https://doi.org/10.1007/s10035-024-01422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01422-6

Keywords

Navigation