Skip to main content
Log in

Statistical evaluation of the effect of size and strain rate on particle strength of rockfill materials

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The deformation of rockfill materials is mostly caused by particle breakage and subsequent skeleton adjustment. To investigate the effect of size and strain rate on particle strength under seismic load, a series of single particle crushing tests with different sizes and loading rates were conducted. The results show that the particle strength increases with the loading rate, while the size effect on particle strength gradually weakens. Furthermore, within the framework of the weakest chain theory, the failure probability per unit volume and the spatial location distribution of microcracks are discussed, and a statistical model for quasi-static particle strength is established. The spatial location of microcracks follows a power law distribution, and there is a specific power exponent at different strain rates, so that the compound parameters of the particle volume and failure probability are gathered on a master curve determined by the weakest chain statistics. The strain rate effect reduces the failure probability per unit volume and makes the spatial location distribution of microcracks sparser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arulrajah, A., Piratheepan, J., Disfani, M.M., Bo, M.W.: Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. J. Mater. Civ. Eng. 25(8), 1077–1088 (2013)

    Google Scholar 

  2. Cil, M.B., Sohn, C., Buscarnera, G.: DEM modeling of grain size effect in brittle granular soils. J. Eng. Mech. 146(3), 04019138 (2020)

    Google Scholar 

  3. Zhou, W., Wang, D., Ma, G., Cao, X., Hu, C., Wu, W.: Discrete element modeling of particle breakage considering different fragment replacement modes. Powder Technol. 360, 312–323 (2020)

    Google Scholar 

  4. Jia, Y., Xu, B., Chi, S., Xiang, B., Zhou, Y.: Research on the particle breakage of rockfill materials during triaxial tests. Int. J. Geomech. 17(10), 04017085 (2017)

    Google Scholar 

  5. Wang, J., Chi, S., Zhou, X., Shao, X.: Experimental and numerical investigation of the size effect of rockfill particles on crushing strength. Granul. Matter 25(4), 60 (2023)

    Google Scholar 

  6. Portnikov, D., Kalman, H.: Determination of elastic properties of particles using single particle compression test. Powder Technol. 268, 244–252 (2014)

    Google Scholar 

  7. Zhang, Y.D., Buscarnera, G., Einav, I.: Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics. Geotechnique 66(2), 149–160 (2016)

    Google Scholar 

  8. Zhao, F., Chi, S.: Characteristics of particle breakage and constitutive model of coarse granular material incorporating gradation evolution. Geotechnique 73, 1–14 (2022)

    Google Scholar 

  9. Mao, H., Shen, C., Liu, S., Wang, L., Fu, Z.: Insight into the crushing strength of rockfill grains at different temperature and relative humidity conditions. Rock Mech. Rock Eng. 56(9), 6529–6543 (2023)

    ADS  Google Scholar 

  10. Guo, Y., Chi, S., Mi, X., Yan, S.: Experimental investigation of statistical characteristics of elastic mechanical parameters and strength indexes of rockfill particles. Granul. Matter 25(2), 30 (2023)

    Google Scholar 

  11. Xiao, Y., Meng, M., Daouadji, A., Chen, Q., Wu, Z., Jiang, X.: Effects of particle size on crushing and deformation behaviors of rockfill materials. Geosci. Front. 11, 375–388 (2020)

    Google Scholar 

  12. Wong, T.-F., Wong, R.H.C., Chau, K.T., Tang, C.A.: Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mech. Mater. 38(7), 664–681 (2006)

    Google Scholar 

  13. Lei, W.-S., Zhang, P., Yu, Z., Qian, G.: Statistics of ceramic strength: use ordinary Weibull distribution function or Weibull statistical fracture theory? Ceram. Int. 46(13), 20751–20768 (2020)

    Google Scholar 

  14. Lei, W.-S., Yu, Z., Zhang, P., Qian, G.: Standardized Weibull statistics of ceramic strength. Ceram. Int. 47(4), 4972–4993 (2021)

    Google Scholar 

  15. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. doi (1951). https://doi.org/10.1115/1.4010337

    Article  Google Scholar 

  16. Zhang, Q.B., Zhao, J.: A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech. Rock Eng. 47(4), 1411–1478 (2013)

    ADS  Google Scholar 

  17. Ma, L., Li, Z., Wang, M., Wei, H., Fan, P.: Effects of size and loading rate on the mechanical properties of single coral particles. Powder Technol. 342, 961–971 (2019)

    Google Scholar 

  18. Wang, X., Zhang, S., Wang, C., Song, R., Shang, C., Fang, X.: Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading. Constr. Build. Mater. 165, 45–57 (2018)

    Google Scholar 

  19. Chen, X., Wu, S., Zhou, J.: Compressive strength of concrete cores under high strain rates. J. Perform. Constr. Facil. 29(1), 06014005 (2015)

    Google Scholar 

  20. Qi, C., Wang, M., Bai, J., Wei, X., Wang, H.: Investigation into size and strain rate effects on the strength of rock-like materials. Int. J. Rock Mech. Min. Sci. 86, 132–140 (2016)

    Google Scholar 

  21. Li, X., Hong, L., Yin, T., Zhou, Z., Ye, Z.: Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure. J. Cent. South Univ. Technol. 15, 218–223 (2008)

    Google Scholar 

  22. Jin, L., Yu, W., Du, X., Zhang, S., Li, D.: Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates. Int. J. Impact Eng 125, 1–12 (2019)

    Google Scholar 

  23. McDowell, G.R., Amon, A.: The application of Weibull statistics to the fracture of soil particles. Soils Found. 40(5), 133–141 (2000)

    Google Scholar 

  24. Nakata, Y., Kato, Y., Hyodo, M., Hyde, A.F.L., Murata, H.: A probabilistic approach to sand particle crushing in the triaxial test. Geotechnique 49(5), 567–583 (1999)

    Google Scholar 

  25. Wei, X.X., Chau, K.T., Wong, R.H.C.: Theoretical and experimental validation of point load strength test for irregular lumps. J. Eng. Mech. 145(9), 04019065 (2019)

    Google Scholar 

  26. Yan, S., Chi, S., Shao, X., Guo, Y.: Effect of size and strain rate on particle strength and stress–strain properties of rockfill materials. Soil Dyn. Earthq. Eng. 162, 107422 (2022)

    Google Scholar 

  27. Batdorf: A statistical theory for the fracture of brittle structures subjected to nonuniform polyaxial stresses. J Appl Mech 41(2), 459–464 (1974)

    Google Scholar 

  28. Beremin, F.M., Pineau, A., Mudry, F., Devaux, J.C.: A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Mater. Trans. A 14(11), 2277–2287 (1983)

    ADS  Google Scholar 

  29. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221(580–593), 163–198 (1921)

    ADS  Google Scholar 

  30. Lei, W.-S.: A framework for statistical modelling of plastic yielding initiated cleavage fracture of structural steels. Philos. Mag. 96(35), 3586–3631 (2016)

    ADS  Google Scholar 

  31. Zhang, M., Lu, Y.J., Yang, Q.: Failure probability and strength size effect of quasi-brittle materials. Chin. J. Rock Mech. Eng. 29, 1782–1789 (2010)

    Google Scholar 

  32. Lei, W.S.: Evaluation of the basic formulations for the cumulative probability of brittle fracture with two different spatial distributions of microcracks. Fatigue Fract. Eng. Mater. Struct. 39(5), 611–623 (2016)

    Google Scholar 

  33. Lei, W.-S.: A generalized weakest-link model for size effect on strength of quasi-brittle materials. J. Mater. Sci. 53(2), 1227–1245 (2017)

    ADS  Google Scholar 

  34. Yu, Z., Lei, W.-S., Zhai, J.: A synchronized statistical characterization of size dependence and random variation of breakage strength of individual brittle particles. Powder Technol. 317, 329–338 (2017)

    Google Scholar 

  35. Meng, Q., Zhang, M., Han, L., Pu, H., Li, H.: Effects of size and strain rate on the mechanical behaviors of rock specimens under uniaxial compression. Arab. J. Geosci. 9(8), 527 (2016)

    Google Scholar 

  36. Liang, C.Y., Zhang, Q.B., Li, X., Xin, P.: The effect of specimen shape and strain rate on uniaxial compressive behavior of rock material. Bull. Eng. Geol. Environ. 75(4), 1669–1681 (2015)

    Google Scholar 

  37. Li, H.B., Zhao, J., Li, T.J.: Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads. Int. J. Rock Mech. Min. Sci. 37(6), 923–935 (2000)

    Google Scholar 

  38. Zhang, Q.B., Zhao, J.: Effect of loading rate on fracture toughness and failure micromechanisms in marble. Eng. Fract. Mech. 102, 288–309 (2013)

    Google Scholar 

  39. Qi, C., Wang, M., Bai, J., Li, K.: Mechanism underlying dynamic size effect on rock mass strength. Int. J. Impact Eng 68, 1–7 (2014)

    Google Scholar 

  40. Ovalle, C., Frossard, E., Dano, C., Hu, W., Maiolino, S., Hicher, P.: The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mech. 225(8), 2199–2216 (2014)

    Google Scholar 

  41. Shao, X., Chi, S., Tao, Y., Zhou, X.: DEM simulation of the size effect on the wetting deformation of rockfill materials based on single-particle crushing tests. Comput. Geotech. 2020(123), 103429 (2020)

    Google Scholar 

  42. Cheng, J., Ma, G., Zhang, G., Chang, X., Zhou, W.: A theoretical model for evaluating the deterioration of mechanical properties of rockfill materials. Comput. Geotech. 163, 105757 (2023)

    Google Scholar 

  43. Huang, Q., Zhou, X., Liu, B.: Effect of realistic shape on grain crushing for rounded and angular granular materials. Comput. Geotech. 162, 105659 (2023)

    Google Scholar 

  44. Lim, W.L., McDowell, G.R., Collop, A.C.: The application of Weibull statistics to the strength of railway ballast. Granul. Matter 6(4), 229–237 (2004)

    Google Scholar 

  45. Ma, G., Wang, Y., Zhou, H., Lu, X., Zhou, W.: Morphology characteristics of the fragments produced by rock grain crushing. Int. J. Geomech. 22(4), 0422020 (2022)

    Google Scholar 

  46. Meng, M., Xiao, Y., Duan, X., Sun, Z., Du, L., Fan, H., Liu, H.: Crushing strength of artificial single-particle considering the effect of particle morphology. Acta Geotech. 17, 3909–3926 (2022)

    Google Scholar 

  47. Wang, Y., Ma, G., Mei, J., Zou, Y., Zhang, D., Zhou, W., Cao, X.: Machine learning reveals the influences of grain morphology on grain crushing strength. Acta Geotech. 16(11), 3617–3630 (2021)

    Google Scholar 

  48. Li, Z., Liu, B., Han, D., Xie, Y., Zhao, Y.: Study on the influence of microcracks of coarse aggregate with specific particle size on crushing strength. Comput. Part. Mech. (2023). https://doi.org/10.1007/s40571-023-00648-0

    Article  Google Scholar 

  49. McDowell, G.R.: Statistics of soil particle strength. Geotechnique 51(10), 897–900 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial and technical support provided by the National Key R&D Program of China (Grant No. 2016YFB0201001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichun Chi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Chi, S., Guo, Y. et al. Statistical evaluation of the effect of size and strain rate on particle strength of rockfill materials. Granular Matter 26, 51 (2024). https://doi.org/10.1007/s10035-024-01417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01417-3

Keywords

Navigation