Skip to main content
Log in

Micromechanical investigation of the shear behaviors of sand‒rubber mixtures using a multibody meshfree method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This study investigates the effect of rubber content (RC) on the mechanical properties of sand‒rubber mixtures (SRMs) using a multibody meshfree approach, which permits faithful modeling of the deformation of rubber particles. A series of two-dimensional simple shear tests is performed on SRMs with different RC. The results indicate a decreased peak shear strength but an increased residual shear strength with increasing RC. The evolutions of microscopic features during shearing are examined. Both the coordination number and the contact length of SRMs progressively increase with RC owing to the deformation of rubber particles. The primary force transmission is sustained by sand particles for SRMs with smaller RC, but controlled by both sand and rubber particles with larger RC. The incorporation of rubber particles results in more uniformly distributed contact forces compared to the pure sand specimen. The particle kinematics reveals and explains the less vulnerability of SRMs to strain localization.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bockstal, L., Berchem, T., Schmetz, Q., Richel, A.: Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: a review. J. Clean. Prod. 236, 117574 (2019)

    Article  Google Scholar 

  2. Wang, Q.Z., Wang, N.N., Tseng, M.L., Huang, Y.M., Li, N.L.: Waste tire recycling assessment: road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China. J. Clean. Prod. 249, 119411 (2020)

    Article  Google Scholar 

  3. Moo-Young, H., Sellasie, K., Zeroka, D., Sabnis, G.: Physical and chemical properties of recycled tire shreds for use in construction. J. Environ. Eng. 129(10), 921–929 (2003)

    Article  Google Scholar 

  4. AnastasiadisA, S.K., Pitilakis, K., Gargala, C., Karakasi, I.: Dynamic behavior of sand/rubber mixtures. Part I: effect of rubber content and duration of confinement on small-strain shear modulus and damping ratio. J. ASTM Int. 9(2), 103680 (2012)

    Article  Google Scholar 

  5. Narejo, D.B., Shettima, M.: Use of recycled automobile tires to design landfill components. Geosynth. Int. 2(3), 619–625 (1995)

    Article  Google Scholar 

  6. Poh, P.S.H., Broms, B.B.: Slope stabilization using old rubber tires and geotextiles. J. Perform. Constr. Facil. 9(1), 76–79 (1995)

    Article  Google Scholar 

  7. Lee, J.H., Salgado, R., Bernal, A., Lovell, C.W.: Shredded tires and rubber-sand as lightweight backfill. J. Geotech. Geoenviron. Eng. 125(2), 132–141 (1999)

    Article  Google Scholar 

  8. Yanagida, T., Matchett, A.J., Coulthard, J.M.: Damping and elastic properties of binary powder mixtures. Powder Technol. 127, 107–115 (2002)

    Article  Google Scholar 

  9. Li, W., Kwok, C.Y., Sandeep, C.S., Senetakis, K.: Sand type effect on the behaviour of sand-granulated rubber mixtures: Integrated study from micro- to macro-scales. Powder Technol. 342, 907–916 (2019)

    Article  Google Scholar 

  10. Liu, L., Cai, G., Zhang, J., Liu, X., Liu, K.: Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: a compressive review. Renew. Sust. Energy Rev. 126, 109831 (2020)

    Article  Google Scholar 

  11. Badarayani, P.R., Artoni, R., Cazacliu, B., Ibraim, E., Richard, P.: Segregation of sand-rubber chips mixtures subject to vertical tapping under confinement. Powder Technol. 393, 764–772 (2021)

    Article  Google Scholar 

  12. Ahmed, I.: Laboratory Study on Properties of Rubber-Soils Final Report. Indiana Department of Transportation and Purdue University, West Lafayette (1993)

    Book  Google Scholar 

  13. Foose, G.J., Benson, C.H., Bosscher, P.J.: Sand reinforced with shredded waste tires. J. Geotech. Eng. 122(9), 760–767 (1996)

    Article  Google Scholar 

  14. Attom, M.F.: The use of shredded waste tires to improve the geotechnical engineering properties of sands. Environ. Geol. 49(4), 497–503 (2006)

    Article  ADS  Google Scholar 

  15. Tatlisoz, N., Edil, T.B., Benson, C.H.: Interaction between reinforcing geosynthetics and soil-tire chip mixtures. J. Geotech. Geoenviron. Eng. 124(11), 1109–1119 (1998)

    Article  Google Scholar 

  16. Zornberg, J.G., Cabral, A.R., Viratjandr, C.: Behaviour of tire shred-sand mixtures. Can. Geotech. J. 41(2), 227–241 (2004)

    Article  Google Scholar 

  17. Edinçliler, A., Ayhan, V.: Influence of tire fiber inclusions on shear strength of sand. Geosynth. Int. 17(4), 183–192 (2010)

    Article  Google Scholar 

  18. Cheng, Z., Wang, J., Li, W.: The micro-mechanical behaviour of sand-rubber mixtures under shear: an experimental study based on X-ray micro-tomography. Soils Found. 60(5), 1251–1268 (2020)

    Article  MathSciNet  Google Scholar 

  19. Valdes, J.R., Evans, T.M.: Sand-rubber mixtures: Experiments and numerical simulations. Can. Geotech. J. 45(4), 588–595 (2008)

    Article  Google Scholar 

  20. Evans, T.M., Valdes, J.R.: The microstructure of particulate mixtures in one-dimensional compression: Numerical studies. Granul. Matter 13(5), 657–669 (2011)

    Article  Google Scholar 

  21. Lee, C., Shin, H., Lee, J.S.: Behavior of sand-rubber particle mixtures: experimental observations and numerical simulations. Int. J. Numer. Anal. Methods Geomech. 38(16), 1651–1663 (2014)

    Article  Google Scholar 

  22. Wang, C., Deng, A., Taheri, A.: Three-dimensional discrete element modeling of direct shear test for granular rubber−sand. Comput. Geotech. 97, 204–216 (2018)

    Article  Google Scholar 

  23. Gong, L., Nie, L., Xu, Y., Wang, H., Zhang, T., Du, C., Wang, Y.: Discrete element modelling of the mechanical behaviour of a sand-rubber mixture containing large rubber particles. Constr. Build. Mater. 205, 574–585 (2019)

    Article  Google Scholar 

  24. Bergado, D.T., Youwai, S., Rittirong, A.: Strength and deformation characteristics of flat and cubical rubber tyre chip-sand mixtures. Géotechnique 55(8), 603–606 (2005)

    Article  Google Scholar 

  25. Asadi, M., Mahboubi, A., Thoeni, K.: Discrete modeling of sand–tire mixture considering grain-scale deformability. Granul. Matter 20(2), 18 (2018)

    Article  Google Scholar 

  26. Asadi, M., Thoeni, K., Mahboubi, A.: An experimental and numerical study on the compressive behavior of sand-rubber particle mixtures. Comput. Geotech. 104, 185–195 (2018)

    Article  Google Scholar 

  27. Ren, Z.L., Cheng, Y.P., Xu, X.: A DEM method for simulating rubber tyres. Géotech. Lett. 10(1), 73–79 (2020)

    Article  Google Scholar 

  28. Gethin, D.T., Ransing, R.S., Lewis, R.W., Dutko, M., Crook, A.J.L.: Numerical comparison of a deformable discrete element model and an equivalent continuum analysis for the compaction of ductile porous material. Comput. Struct. 79(13), 1287–1294 (2001)

    Article  Google Scholar 

  29. Loidolt, P., Ulz, M.H., Khinast, J.: Modeling yield properties of compacted powder using a multi-particle finite element model with cohesive contacts. Powder Technol. 336, 426–440 (2018)

    Article  Google Scholar 

  30. Boromand, A., Signoriello, A., Ye, F., O’Hern, C.S., Shattuck, M.D.: Jamming of deformable polygons. Phys. Rev. Lett. 121(24), 248003 (2018)

    Article  ADS  Google Scholar 

  31. Boromand, A., Signoriello, A., Lowensohn, J., Orellana, C.S., Weeks, E.R., Ye, F., Shattuck, M.D., O’Hern, C.S.: The role of deformability in determining the structural and mechanical properties of bubbles and emulsions. Soft Matter 15(29), 5854–5865 (2019)

    Article  ADS  Google Scholar 

  32. Nezamabadi, S., Radjai, F., Averseng, J., Delenne, J.Y.: Implicit frictional-contact model for soft particle systems. J. Mech. Phys. Solids 83, 72–87 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. Nezamabadi, S., Nguyen, T.H., Delenne, J.Y., Radjai, F.: Modeling soft granular materials. Granul. Matter 19(1), 8 (2017)

    Article  Google Scholar 

  34. Cárdenas-Barrantes, M., Cantor, D., Barés, J., Renouf, M., Azéma, E.: Compaction of mixtures of rigid and highly deformable particles: a micromechanical model. Phys. Rev. E 102(3), 032904 (2020)

    Article  ADS  Google Scholar 

  35. Vu, T.L., Nezamabadi, S., Mora, S.: Compaction of elastic granular materials: inter-particles friction effects and plastic events. Soft Matter 16(3), 679–687 (2020)

    Article  ADS  Google Scholar 

  36. Mollon, G.: Mixtures of hard and soft grains: micromechanical behavior at large strains. Granul. Matter 20(3), 39 (2018)

    Article  Google Scholar 

  37. Mollon, G.: A multibody meshfree strategy for the simulation of highly deformable granular materials. Int. J. Numer. Methods Eng. 108(12), 1477–1497 (2016)

    Article  MathSciNet  Google Scholar 

  38. Mollon, G.: A unified numerical framework for rigid and compliant granular materials. Comput. Part. Mech. 5(4), 517–527 (2018)

    Article  Google Scholar 

  39. Mollon, G.: Solid flow regimes within dry sliding contacts. Tribol. Lett. 67(4), 120 (2019)

    Article  Google Scholar 

  40. Zhang, Y., Mollon, G., Descartes, S.: Significance of third body rheology in friction at a dry sliding interface observed by a multibody meshfree model: influence of cohesion between particles. Tribol. Int. 145, 106188 (2020)

    Article  Google Scholar 

  41. Mollon, G., Aubry, J., Schubnel, A.: Simulating melting in 2D seismic fault gouge. J. Geophys. Res. Solid Earth 126(6), e2020JB021485 (2021)

    Article  ADS  Google Scholar 

  42. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nezamabadi, S., Zahrouni, H., Yvonnet, J.: Solving hyperelastic material problems by asymptotic numerical method. Comput. Mech. 47(1), 77–92 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vu, T.L., Barés, J., Mora, S., Nezamabadi, S.: Numerical simulations of the compaction of assemblies of rubberlike particles: a quantitative comparison with experiments. Phys. Rev. E 99(6), 062903 (2019)

    Article  ADS  Google Scholar 

  45. Nguyen, D.T., Rauchs, G., Ponthot, J.P.: The impact of surface higher order differentiability in two-dimensional contact elements. J. Comput. Appl. Math. 246, 195–205 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  47. Cui, L., O’Sullivan, C.: Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Géotechnique 56(7), 455–468 (2006)

    Article  Google Scholar 

  48. Rivlin, R.S.: Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos. Trans. Royal Soc. London A 240, 459–490 (1948)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Lee, J.-S., Dodds, J., Santamarina, J.C.: Behavior of rigid-soft particle mixtures. J. Mater. Civil Eng. 19(2), 179–184 (2007)

    Article  Google Scholar 

  50. Luo, R.K.: Impact simulation and experiment on rubber anti-vibration systems. Polym. Test. 50, 335–342 (2016)

    Article  Google Scholar 

  51. Guo, N., Zhao, J.: Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear. Phys. Rev. E 89(4), 042208 (2014)

    Article  ADS  Google Scholar 

  52. Zhang, Y., Liu, F.: Test study of rubber-sand mixtures under different initial states in direct shear (in Chinese). Ind. Constr. 46(7), 145–153 (2016)

    Google Scholar 

  53. Rothenburg, L., Kruyt, N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41(21), 5763–5774 (2004)

    Article  MATH  Google Scholar 

  54. O’Sullivan, C., Bray, J.D., Riemer, M.F.: Influence of particle shape and surface friction variability on response of rod-shaped particulate media. J. Eng. Mech. 128(11), 1182–1192 (2002)

    Google Scholar 

  55. Lopera Perez, J.C., Kwok, C.Y., Senetakis, K.: Micromechanical analyses of the effect of rubber size and content on sand-rubber mixtures at the critical state. Geotext. Geomembr. 45(2), 81–97 (2017)

    Article  Google Scholar 

  56. Minh, N.H., Cheng, Y.P.: A DEM investigation of the effect of particle-size distribution on one-dimensional compression. Géotechnique 63(1), 44–53 (2013)

    Article  Google Scholar 

  57. Hu, Z., Zhang, Y., Yang, Z.: Suffusion-induced evolution of mechanical and microstructural properties of gap-graded soils using CFD-DEM. J. Geotech. Geoenviron. Eng. 146(5), 04020024 (2020)

    Article  Google Scholar 

  58. Guo, N., Zhao, J.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  59. da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    Article  ADS  Google Scholar 

  60. Losert, W., Bocquet, L., Lubensky, T.C., Gollub, J.P.: Particle dynamics in sheared granular matter. Phys. Rev. Lett. 85(7), 1428–1431 (2000)

    Article  ADS  Google Scholar 

  61. Nasuno, S., Kudrolli, A., Gollub, J.P.: Friction in granular layers: hysteresis and precursors. Phys. Rev. Lett. 79(5), 949–952 (1997)

    Article  ADS  Google Scholar 

  62. Bardet, J.P., Proubet, J.: Shear-band analysis in idealized granular material. J. Eng. Mech. 118(2), 397–415 (1992)

    Google Scholar 

  63. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique 48(4), 465–481 (1998)

    Article  Google Scholar 

  64. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000)

    Article  Google Scholar 

  65. Zhao, J., Guo, N.: The interplay between anisotropy and strain localisation in granular soils: a multiscale insight. Géotechnique 65(8), 642–656 (2015)

    Article  Google Scholar 

  66. Platzer, A., Rouhanifar, S., Richard, P., Cazacliu, B., Ibraim, E.: Sand–rubber mixtures undergoing isotropic loading: derivation and experimental probing of a physical model. Granul. Matter 20(4), 81 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Guilhem Mollon for sending us the most recent version of MELODY that has been used in the study. The research was funded by the National Natural Science Foundation of China (Nos. 52008409, 52078456), the Basic and Applied Basic Research Foundation of Guangzhou (No. 202102020212), as well as the support of MOE Key Laboratory of Soft Soils and Environmental Engineering, Zhejiang University and the Fundamental Research Funds for the Central Universities, China (No. 2021FZZX001-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Shi, Y.H., Guo, N. et al. Micromechanical investigation of the shear behaviors of sand‒rubber mixtures using a multibody meshfree method. Granular Matter 24, 73 (2022). https://doi.org/10.1007/s10035-022-01236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01236-4

Keywords

Navigation