Skip to main content
Log in

DEM modelling of cone penetration tests in lunar soil

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents numerical investigations of the cone-penetration test (CPT) in lunar soil via a modified 2D Discrete Element Method (DEM). The Van der Waals forces were included in the DEM particle contact model to simulate the cohesive interactions in the lunar environment. In addition, the rolling resistance model was used to account for the high inter-particle friction angle resulted from particle angularity. A series of DEM biaxial tests were performed to investigate the mechanical properties of lunar soil. The obtained results from the DEM biaxial tests indicate that the mechanical behaviour of lunar soil is different from that of terrestrial soil due to the inter-particle cohesive forces and low gravity on the Moon. In tests, the grains near the penetrometer have experienced intense loading and unloading with complex displacement paths. In the meantime, the granular velocity, stress and strain fields were also changed during the penetration process. This study reveals that the lunar soil has relatively small friction and strength when compared with the terrestrial soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Jiang el al. (2013))

Fig. 2

modified from Jiang el al. (2013))

Fig. 3

modified from Jiang el al. (2013))

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ziyuan O (2005) An introduction to lunar science: China Astronautic Publishing House

  2. Heiken GH, Vaniman DT, French BM (1991) Lunar Sourcebook. Cambridge University Press, Cambridge

  3. Robertson, P.K.: In situ testing and its application to foundation engineering. Can Geotech J 23(4), 573–594 (1986)

    Article  Google Scholar 

  4. Been, K., Jefferies, M.G., Crooks, J.H.A., Rothenburg, L.: The cone penetration test in sands: part II, general inference of state. Géotechnique 37(3), 285–299 (1987)

    Article  Google Scholar 

  5. Sladen, J.A.: Problems with interpretation of sand state from cone penetration test. Géotechnique 39(2), 232–332 (1989)

    Article  Google Scholar 

  6. Houlsby, G.T., Hitchman, R.: Calibration chamber tests of a cone penetrometer in sand. Géotechnique 38(1), 39–44 (1988)

    Article  Google Scholar 

  7. Costes NC, Mitchell JK (1970) Apollo 11 soil mechanics investigation. Proceedings of the Apollo 11 Lunar Science Conference. Houston 2025–2044

  8. Costes NC, Cohron GT, Moss DC (1971) Cone penetration resistance test-an approach to evaluating in-place strength and packing characteristics of lunar soils. Proceedings of the Lunar Science Conference. Houston. 1973–1987

  9. Matsushima, T., Katagiri, J., Uesugi, K., Tsuchiyama, A., Nakano, T.: 3D Shape characterization and image-based DEM simulation of the lunar soil simulant FJS-1. J Aerosp Eng 22(1), 15–23 (2009)

    Article  Google Scholar 

  10. Alshibli, K., Hasan, A.: Strength properties of JSC-1A lunar regolith simulant. J Geotech Geoenviron Eng 135(5), 673–679 (2009)

    Article  Google Scholar 

  11. Garboczi, E.J.: Three dimensional shape analysis of JSC-1A simulated lunar regolith particles. Powder Technol 207(1–3), 96–103 (2011)

    Article  Google Scholar 

  12. Oravec, H.A., Zeng, X., Asnani, V.M.: Design and characterization of GRC-1: a soil for lunar terramechanics testing in Earth-ambient conditions. J Terrramech 47(6), 361–377 (2010)

    Article  Google Scholar 

  13. Jiang, M.J., Li, L.Q., Yang, Q.J.: Experimental investigation on deformation behavior of TJ-1 lunar soil simulant subjected to principal stress rotation. Adv Space Res 52(1), 136–146 (2013)

    Article  ADS  Google Scholar 

  14. Jiang, M.J., Liqing, L.: Development of TJ-1 lunar soil simulant. Chin J Geotech Eng 33(2), 209–214 (2011)

    Google Scholar 

  15. Jiang, M., Li, L., Sun, Y.: Properties of TJ-1 lunar soil simulant. J Aerosp Eng 25(3), 463–469 (2011)

    Article  Google Scholar 

  16. Asaf Z, Shmulevich I D R (2006) Predicting soil-rigid wheel performance using distinct element methods. Trans ASABE 49(3):607–616

  17. Yokoyama T, Higuchi K (2008) Estimate of Impact Force at Landing on Lunar Surface by SPH Method. Earth & Space. 1–7

  18. Mitchell JKH, WN Scott RF, Costes NC, Carrier WD III, Bromwell, LG (1972) Mechanical properties of lunar soil-Density, porosity, cohesion, and angle of internal friction. Abstracts Lunar Planet Sci Conf 3:545

  19. Kawaguchi, T., Tanaka, T., Tsuji, Y.: Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models). Powder Technol 96(2), 129–138 (1998)

    Article  Google Scholar 

  20. Perkins, S., Madson, C.: Mechanical and load-settlement characteristics of two lunar soil simulants. J Aerosp Eng 9(1), 1–9 (1996)

    Article  Google Scholar 

  21. Nakashima, H., Shioji, Y., Tateyama, K., Aoki, S., Kanamori, H., Yokoyama, T.: Specific cutting resistance of lunar regolith simulant under low gravity conditions. J Aerosp Eng 1(1), 58–68 (2008)

    Google Scholar 

  22. Houston, W.N., Namiq, L.I.: Penetration resistance of lunar soils. J Terrramech 8(1), 59–69 (1971)

    Article  Google Scholar 

  23. Yu, M.: Analysis of cone resistance: review of methods. J Geotech Geoenviron Eng 124(2), 140–149 (1998)

    Article  Google Scholar 

  24. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  25. Iwashita, K.: Rolling resistance at contacts in simulation of shear band development by DEM. J Eng Mech 124(285), 285–292 (1998)

    Article  Google Scholar 

  26. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  27. Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput Geotech 32(5), 340–357 (2005)

    Article  Google Scholar 

  28. Jiang, M.J., Harris, D., Zhu, H.H.: Future continuum models for granular materials in penetration analyses. Granular Matter 9(1–2), 97–108 (2007)

    MATH  Google Scholar 

  29. Jiang, M.J., Yu, H.S., Harris, D.: Discrete element modelling of deep penetration in granular soils. Int J Numer Anal Meth Geomech 30(4), 335–361 (2006)

    Article  Google Scholar 

  30. Jiang, M., Zhu, H., Li, X.: Strain localization analyses of idealized sands in biaxial tests by distinct element method. Front Archit Civ Eng China 4(2), 208–222 (2010)

    Article  Google Scholar 

  31. Jiang, M.J., Yan, H.B., Zhu, H.H., Utili, S.: Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses. Comput Geotech 38(1), 14–29 (2011)

    Article  Google Scholar 

  32. Jiang, M.J., Sun, Y.G.: Cavity expansion analyses of crushable granular materials with state-dependent dilatancy. Int J Numer Anal Meth Geomech 36(6), 723–742 (2012)

    Article  Google Scholar 

  33. Bui, H.H., Kobayashi, T., Fukagawa, R., Wells, J.C.: Numerical and experimental studies of gravity effect on the mechanism of lunar excavations. J Terrramech 46(3), 115–124 (2009)

    Article  Google Scholar 

  34. Nakashima, H., Fujii, H., Oida, A., Momozu, M., Kawase, Y., Kanamori, H., et al.: Parametric analysis of lugged wheel performance for a lunar microrover by means of DEM. J Terrramech 44(2), 153–162 (2007)

    Article  Google Scholar 

  35. Nakashima, H., Fujii, H., Oida, A., Momozu, M., Kanamori, H., Aoki, S., et al.: Discrete element method analysis of single wheel performance for a small lunar rover on sloped terrain. J Terrramech 47(5), 307–321 (2010)

    Article  Google Scholar 

  36. Nakashima, H., Shioji, Y., Kobayashi, T., Aoki, S., Shimizu, H., Miyasaka, J., et al.: Determining the angle of repose of sand under low-gravity conditions using discrete element method. J Terrramech 48(1), 17–26 (2011)

    Article  Google Scholar 

  37. Ji, S.Y., Shen, H.H.: Two-dimensional simulation of the angle of repose for a particle system with electrostatic charge under lunar and earth gravity. J Aerosp Eng 22(1), 10–14 (2009)

    Article  MathSciNet  Google Scholar 

  38. Hasan, A., Alshibli, K.A.: Discrete element modeling of strength properties of Johnson Space Center (JSC-1A) lunar regolith simulant. J Aerosp Eng 23(3), 157–165 (2010)

    Article  Google Scholar 

  39. Huang, Y., Lu, X., Zhao, R., Li, W.: Three dimensiodnal simulation of lunar dust levitation under the effect of simulated sphere body. J Terrramech 48(4), 297–306 (2011)

    Article  Google Scholar 

  40. Perko, H., Nelson, J., Sadeh, W.: Surface Cleanliness Effect on Lunar Soil Shear Strength. Journal of Geotechnical and Geoenvironmental Engineering. 127(4), 371–383 (2001)

    Article  Google Scholar 

  41. Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput Geotech. 36(1–2), 320–331 (2009)

    Article  Google Scholar 

  42. Jiang MJ, Shen ZF, Thornton C. Microscopic contact model of lunar regolith for high effiiency discrete element analyses. Computers and Geotechnics. 2013;54(104–16.

  43. Jiang, M., Yu, H.-S., Leroueil, S.: A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method. Int J Numer Meth Eng 69(6), 1158–1193 (2007)

    Article  Google Scholar 

  44. Modenese C (2013) Numerical Study of the Mechanical Properties of Lunar Soil by the Discrete Element Method, D. Phil Thesis: University of Oxford

  45. Jiang MJ, Wang XX, Zheng M, Dai YS (2012) Interaction between Lugged Wheel of Lunar Rover and Lunar Soil by DEM with a New Contact Model. Earth and Space 2012: American Society of Civil Engineers, 155–164

  46. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput Geotech 30(7), 579–597 (2003)

    Article  Google Scholar 

  47. Gui MWB, M. D.; Garnier, J.; Corté, J. F.; Bagge, Gunnar; Laue, J.; Renzi, R. Centrifuge cone penetration tests in sand. Géotechnique. 1999;49(4):543–52.

  48. Gaudin, S.F., Garnier, J.: Sand characterization by combined centrifuge and laboratory tests. Int J Phys Modell Geotech 1, 42–56 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The work in this paper was financially supported by National Nature Science Foundation of China with Grant Nos. 51890911 and 51639008, and National key Research and Development Program of China with Grant No. 2019YFC0312304, which are sincerely appreciated. In addition, the authors are very thankful to the reviewers for their valuable comments, which have improved the quality of this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjing Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Zhao, T. & Wang, X. DEM modelling of cone penetration tests in lunar soil. Granular Matter 24, 5 (2022). https://doi.org/10.1007/s10035-021-01142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01142-1

Keywords

Navigation