Skip to main content
Log in

Flow dynamics of spherical grains through conical cardboard hoppers

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The gravity-driven flow of monodisperse spherical grains of different nature and diameter d, through conical cardboard hoppers, has been studied as function of the orifice diameter D for different values of the aperture angle α (~ 3° ÷ 15°) at large grains conditions (D ≤ 10d). The mass flow rate trend function has displayed, at the lowest angles, a series of linear tracts, with increasing slope, delimited by approximately odd integers of the grains diameter. The linear tracts have been associated to different flow rate regimes, governed by the formation, at the bottom of the granular column, of short-lived arches of “quantized” size (~ 5d, ~ 7d, ~ 9d, …), acting as brakes to flow, by their detachment and ejection from the hopper. This mechanism of events should give rise to a modulation of the flow whose frequency was effectively measured, for the arches of ~ 5d size, by analyzing the signal produced by the falling grains on a microphone. The data of mass flow rate W, as function of the orifice diameter D, have shown, on average, a growth following the 5/2 power-law function, as foreseen by the well-known Beverloo law. Here we analyze the simplified expression of the mass flow rate with the dimension of the square root of the acceleration of gravity, which shows only a slight dependence on the aperture angle of the hopper. The jamming of grains at the outlet opening has been also investigated throughout the transition region at D ~ 3d  ÷ 4d, which characterizes the passage from the blocked to the continuous flow for few tens thousand grains, by an optical method and by measuring the frequency of the clogging events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Beverloo, W.A., Leniger, H.A., van de Velde, J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260–269 (1961)

    Article  Google Scholar 

  2. Nedderman, R.M., Tüzün, U.: The flow of granular materials I. Discharge rates from hoppers. Chem. Eng. Sci. 37, 1597–1609 (1982)

    Article  Google Scholar 

  3. Tüzün, U., Houlsby, G.T., Nedderman, R.M., Savage, S.B.: The flow of granular materials II. Velocity distribution in slow flow. Chem. Eng. Sci. 37, 1691–1709 (1982)

    Article  Google Scholar 

  4. Savage, S.B., Nedderman, R.M., Tüzün, U., Houlsby, G.T.: The flow of granular materials III. Rapid Shear Flows. Chem. Eng. Sci. 38, 189–195 (1983)

    Article  Google Scholar 

  5. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523–1531 (1992)

    Article  ADS  Google Scholar 

  6. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  7. Herrmann, H.J., Hovi, J.-P., Luding, S.: Physics of Dry Granular Media. Springer, Dordrecht (1998)

    Book  Google Scholar 

  8. Kadanoff, L.P.: Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435–444 (1999)

    Article  ADS  Google Scholar 

  9. De Gennes, P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71, S374–S382 (1999)

    Article  Google Scholar 

  10. Yersel, M.: The flow of sand. Phys. Teach. 38, 290–291 (2000)

    Article  ADS  Google Scholar 

  11. Duran, J.: Sand, Powders and Grains. An Introduction to the Physics of Granular Materials. Springer, New York (2000)

    Book  Google Scholar 

  12. Herrmann, H.J.: Granular matter. Phys. A 313, 188–210 (2002)

    Article  Google Scholar 

  13. Kozicki, J., Tejchman, J.: Application of a cellular automaton to simulations of granular flow in silos. Granul. Matter 7, 45–54 (2005)

    Article  Google Scholar 

  14. Mankoc, C., Janda, A., Arévalo, R., Pastor, J.M., Zuriguel, I., Garcimartín, Á., Maza, D.: The flow rate of granular materials through an orifice. Granul. Matter 9, 407–414 (2007)

    Article  Google Scholar 

  15. Janda, A., Zuriguel, I., Garcimartín, Á., Pugnaloni, L.A., Maza, D.: Jamming and critical outlet size in the discharge of a two-dimensional silo. Eur. Phys. Lett. 84, 44002 (2008)

    Article  ADS  Google Scholar 

  16. Franklin, S.V., Shattuck, M.D.: Handbook of Granular Materials. CRC Press, Taylor & Francis Group, Boca Raton (2016)

    Book  Google Scholar 

  17. To, K., Lai, P.-Y.: Jamming pattern in a two-dimensional hopper. Phys. Rev. E 66, 011308 (2002)

    Article  ADS  Google Scholar 

  18. Zuriguel, I., Garcimartín, Á., Maza, D., Pugnaloni, L.A., Pastor, J.M.: Jamming during the discharge of granular matter from a silo. Phys. Rev. E 71, 051303 (2005)

    Article  ADS  Google Scholar 

  19. Rubio-Largo, S.M., Janda, A., Maza, D., Zuriguel, I., Hidalgo, R.C.: Disentangling the free-fall arch paradox in silo discharge. Phys. Rev. Lett. 114, 238002 (2015)

    Article  ADS  Google Scholar 

  20. To, K.: Jamming transition in two-dimensional hoppers and silos. Phys. Rev. E 71, 060301(R) (2005)

    Article  ADS  Google Scholar 

  21. Clement, E., Reydellet, G., Rioual, F., Parise, B., Fanguet, V., Lanuza, J., Kolb, E.: Jamming patterns and blockade statistics in model granular flows. In: Helbing, D., Herrmann, H., Schreckenberg, M., Wolf, D. (eds.) Traffic and Granular Flow’99, pp. 457–468. Springer, Berlin (2000)

    Chapter  Google Scholar 

  22. Nedderman, R.M.: Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  23. Helbing, D., Johansson, A.: Analytical approach to continuous and intermittent bottleneck flows. Phys. Rev. Lett. 97, 168001 (2006)

    Article  ADS  Google Scholar 

  24. Janda, A., Zuriguel, I., Maza, D.: Flow rate of particles through apertures obtained from self-similar density and velocity profiles. Phys. Rev. Lett. 108, 248001 (2012)

    Article  ADS  Google Scholar 

  25. Gella, D., Maza, D., Zuriguel, I.: Role of particle size in the kinematic properties of silo flow. Phys. Rev. E 95, 052904 (2017)

    Article  ADS  Google Scholar 

  26. Koivisto, J., Durian, D.J.: Effect of interstitial fluid on the fraction of flow microstates that precede clogging in granular hoppers. Phys. Rev. E 95, 032904 (2017)

    Article  ADS  Google Scholar 

  27. Wójcik, M., Sondej, M., Rejowski, K., Tejchman, J.: Full-scale experiments on wheat flow in steel silo composed of corrugated walls and columns. Powder Technol. 311, 537–555 (2017)

    Article  Google Scholar 

  28. Thomas, C.C., Durian, D.J.: Intermittency and Velocity Fluctuations in Hopper Flows Prone to Clogging. arXiv:1604.08081v1 [cond-mat.soft] 27 Apr 2016

  29. Cambou, B.: Behaviour of Granular Materials. Springer, Wien (1998)

    Book  Google Scholar 

  30. Brown, R.L., Richards, J.C.: Principles of Powder Mechanics. International Series of Monographs in Chemical Engineering, vol. 10. Pergamon press, Oxford (1970)

    Google Scholar 

  31. Sheldon, H.G., Durian, D.J.: Granular discharge and clogging for tilted hoppers. Granul. Matter 12, 579–585 (2010)

    Article  Google Scholar 

  32. Thomas, C.C., Durian, D.J.: Geometry dependence of the clogging transition in tilted hoppers. Phys. Rev. E 87, 052201 (2013)

    Article  ADS  Google Scholar 

  33. Lozano, C., Lumay, G., Zuriguel, I., Hidalgo, R.C., Garcimartín, Á.: Breaking arches with vibrations: the role of defects. Phys. Rev. Lett. 109, 068001 (2012)

    Article  ADS  Google Scholar 

  34. Lozano, C., Zuriguel, I., Garcimartín, Á.: Stability of clogging arches in a silo submitted to vertical vibrations. Phys. Rev. E 91, 062203 (2015)

    Article  ADS  Google Scholar 

  35. Garcimartín, Á., Lozano, C., Lumay, G., Zuriguel, I.: Avoiding clogs: the shape of arches and their stability against vibrations. In: Powders and Grains 2013 AIP Conference Proceedings, vol. 1542, pp. 686–689 (2013)

  36. Guerrero, B., Lozano, C., Zuriguel, I., Garcimartín, Á.: Dynamics of breaking arches under a constant vibration. In: EPJ Web of Conferences, vol. 140, p. 03016 (2017)

    Article  Google Scholar 

  37. Zuriguel, I., Janda, A. Arévalo, R., Maza, D., Garcimartín, Á.: Clogging and unclogging of many-particle systems passing through a bottleneck. In: Powders and Grains 2017 EPJ Web of Conferences, vol. 140, p. 01002 (2017)

    Article  Google Scholar 

  38. Mankoc, C., Garcimartín, Á., Zuriguel, I., Maza, D.: Role of vibrations in the jamming and unjamming of grains discharging from a silo. Phys. Rev. E 80, 011309 (2009)

    Article  ADS  Google Scholar 

  39. Janda, A., Maza, D., Garcimartín, Á., Kolb, E., Lanuza, J., Clément, E.: Unjamming a granular hopper by vibration. Eur. Phys. Lett. 87, 24002 (2009)

    Article  ADS  Google Scholar 

  40. Lindemann, K., Dimon, P.: Two-dimensional granular flow in a vibrated small-angle funnel. Phys. Rev. E 62, 5420 (2000)

    Article  ADS  Google Scholar 

  41. Evesque, P., Meftah, W.: Mean flow of a vertically vibrated hour-glass. Int. J. Mod. Phys. B 7, 1799 (1993)

    Article  ADS  Google Scholar 

  42. Wassgren, C.R.: Effects of vertical vibration on hopper flows of granular material. Phys. Fluids 14, 3439 (2002)

    Article  ADS  Google Scholar 

  43. Chen, K., Stone, M.B., Barry, R., Lohr, M., McConville, W., Klein, K., Sheu, B.L., Morss, A.J., Scheidemantel, T., Schiffer, P.: Flux through a hole from a shaken granular medium. Phys. Rev. E 74, 011306 (2006)

    Article  ADS  Google Scholar 

  44. Pacheco-Martinez, H., van Gerner, H.J., Ruiz-Suárez, J.C.: Storage and discharge of a granular fluid. Phys. Rev. E 77, 021303 (2008)

    Article  ADS  Google Scholar 

  45. Nicolas, A., Garcimartín, Á.: Zuriguel, I: trap model for clogging and unclogging in granular hopper flows. Phys. Rev. Lett. 120, 198002 (2018)

    Article  ADS  Google Scholar 

  46. Kruelle, C.A.: Physics of granular matter: pattern formation and applications. Rev. Adv. Mater. Sci. 20, 113–124 (2009)

    Google Scholar 

  47. Hunt, M.L., Weathers, R.C., Lee, A.T., Brennen, C.E.: Effects of horizontal vibration on hopper flows of granular materials. Phys. Fluids 11, 68–75 (1999)

    Article  ADS  Google Scholar 

  48. Zuriguel, I., Janda, A., Garcimartín, Á., Lozano, C., Arévalo, R., Maza, D.: Silo clogging reduction by the presence of an obstacle. Phys. Rev. Lett. 107, 278001 (2011)

    Article  ADS  Google Scholar 

  49. Lozano, C., Janda, A., Garcimartín, Á., Maza, D., Zuriguel, I.: Flow and clogging in a silo with an obstacle above the orifice. Phys. Rev. E 86, 031306 (2012)

    Article  ADS  Google Scholar 

  50. Saraf, S., Franklin, S.V.: Power-law flow statistics in anisometric (wedge) hoppers. Phys. Rev. E 83, 030301(R) (2011)

    Article  ADS  Google Scholar 

  51. Parisi, D.R., Hidalgo, R.C., Zuriguel, I.: Active particles with desired orientation flowing through a bottleneck. Sci. Rep. 8, 9133 (2018)

    Article  ADS  Google Scholar 

  52. Börzsönyi, T., Somfai, E., Szabó, B., Wegner, S., Mier, P., Rose, G., Stannarius, R.: Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment. New J. Phys. 18, 093017 (2016)

    Article  ADS  Google Scholar 

  53. Saraf, S., Franklin, S.: Jamming of rod-like granular materials in hoppers. Bull. Am. Phys. Soc. 45, J14.005 (2009)

    Google Scholar 

  54. Desmond, K., Franklin, S.V.: Jamming of three-dimensional prolate granular materials. Bull. Am. Phys. Rev. E 73, 031306 (2006)

    Article  ADS  Google Scholar 

  55. Tighe, B.P., Sperl, M.: Pressure and motion of dry sand: translation of Hagen’s paper from 1852. Granul. Matter 9, 141–144 (2007)

    Article  Google Scholar 

  56. Janssen, H.A.: Tests on grain pressure silos. Zeits. d. Vereins Deutsch Ing. 39(35), 1045–1049 (1985). (in German)

    Google Scholar 

  57. Sperl, M.: Experiments on corn pressure in silo cells—translation and comment of Janssen’s paper from 1895. Granul. Matter 8, 59–65 (2006)

    Article  Google Scholar 

  58. Madrid, M.A., Darias, J.R., Pugnaloni, L.A.: Forced flow of granular media: breakdown of Beverloo scaling. Eur. Phys. Lett. 123, 14004 (2018)

    Article  ADS  Google Scholar 

  59. Wu, X-l, Måløy, K.J., Hansen, A., Ammi, M., Bideau, D.: Why hour glasses tick. Phys. Rev. Lett. 71, 1363–1366 (1993)

    Article  ADS  Google Scholar 

  60. Veje, C.T., Dimon, P.: The dynamics of granular flow in an hourglass. Granul. Matter 3, 151–164 (2001)

    Article  Google Scholar 

  61. Hirshfeld, D., Radzyner, Y., Rapaport, D.C.: Molecular dynamic studies of granular flow through an aperture. Phys. Rev. E 56, 4404–4415 (1997)

    Article  ADS  Google Scholar 

  62. Hirshfeld, D., Rapaport, D.C.: Granular flow from a silo: discrete-particle simulations in three dimensions. Eur. Phys. J. E 4, 193–199 (2001)

    Article  Google Scholar 

  63. Mankoc, C., Janda, A., Arévalo, R., Pastor, J.M., Zuriguel, I., Garcimartín, Á., Maza, D.: Erratum: the flow rate of granular materials through an orifice. Granul. Matter 10, 469 (2008)

    Article  Google Scholar 

  64. Zuriguel, I., Pugnaloni, L.A., Garcimartín, Á., Maza, D.: Jamming during the discharge of grains from a silo described as a percolating transition. Phys. Rev. E 68, 030301(R) (2003)

    Article  ADS  Google Scholar 

  65. Garcimartín, Á., Zuriguel, I., Maza, D., Pastor, J.M., Pugnaloni, L.A.: Jamming in granular matter. In: AIP Conference Proceedings, vol. 742, no. 279, pp. 279–288 (2004)

  66. Janda, A., Harich, R., Zuriguel, I., Maza, D., Cixous, P., Garcimartín, Á.: Flow-rate fluctuations in the outpouring of grains from a two-dimensional silo. Phys. Rev. E 79, 031302 (2009)

    Article  ADS  Google Scholar 

  67. To, K., Lai, P.-Y., Pak, H.K.: Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86, 71–74 (2001)

    Article  ADS  Google Scholar 

  68. Garcimartín, Á., Zuriguel, I., Pugnaloni, L.A., Janda, A.: Shape of jamming arches in two-dimensional deposits of granular materials. Phys. Rev. E 82, 031306 (2010)

    Article  ADS  Google Scholar 

  69. Tang, J., Behringer, R.P.: How granular materials jam in a hopper. Chaos 21, 041107 (2011)

    Article  ADS  Google Scholar 

  70. Sakaguchi, H., Ozaki, E., Igarashi, T.: Plugging of the flow of granular materials during the discharge from a silo. Int. J. Mod. Phys. B 7, 1949–1963 (1993)

    Article  ADS  Google Scholar 

  71. Janda, A., Zuriguel, I., Garcimartín, Á., Maza, D.: Clogging of granular materials in narrow vertical pipes discharged at constant velocity. Granul. Matter 17, 545–551 (2015)

    Article  Google Scholar 

  72. Tang, J., Sagdiphour, S., Behringer, R.P.: Jamming and flow in 2D hoppers. In: AIP Conference Proceedings, vol. 1145, pp. 515–518 (2009)

  73. Thomas, C.C., Durian, D.J.: Fraction of clogging configurations sampled by granular hopper flow. Phys. Rev. Lett. 114, 178001 (2015)

    Article  ADS  Google Scholar 

  74. Török, J., Lévay, S., Balázs, S., Somfai, E., Wegner, S., Stannarius, R., Börzsönyi, T.: Arching in three-dimensional clogging. In: EPJ Web of Conferences vol. 140, p. 03076 (2017)

    Article  Google Scholar 

  75. Manna, S.S., Herrmann, H.J.: Intermittent granular flow and clogging with internal avalanches. Eur. Phys. J. E 1, 341–344 (2000)

    Article  Google Scholar 

  76. Bouchaud, J.-P., Claudin, P., Clément, E., Otto, M., Reydellet, G.: The stress response function in granular materials. C. R. Phys. 3, 141–151 (2002)

    Article  ADS  Google Scholar 

  77. Bouchaud, J.-P., Claudin, P., Clément, E., Otto, M., Reydellet, G.: The stress response function in granular materials. Eur. Phys. J. E 1, 341–344 (2000)

    Article  Google Scholar 

  78. Bouchaud, J.-P., Claudin, P., Levine, D., Otto, M.: Force chain splitting in granular materials: a mechanism for large-scale pseudo-elastic behavior. Eur. Phys. J. E 4, 451–457 (2001)

    Article  Google Scholar 

  79. www.favini.com. Accessed 5 Mar 2019

  80. Scott, G.D.: Packing of spheres. Nature 188, 908–909 (1960)

    Article  ADS  Google Scholar 

  81. Scott, G.D., Kilgour, D.M.: The density of random close packing of spheres. Br. J. Appl. Phys. (J. Phys. D) 2, 863–866 (1969)

    Article  ADS  Google Scholar 

  82. Aste, T., Weaire, D.: The pursuit of perfect packing. Taylor & Francis Group, New York (2000)

    Book  Google Scholar 

Download references

Acknowledgements

We sincerely thank Nicola Ricci for the characterization of the samples at the optical microscope, and Achille Monegato, of Favini S.r.l., for the measurements on the cardboard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Parretta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Pietro Grillo: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parretta, A., Grillo, P. Flow dynamics of spherical grains through conical cardboard hoppers. Granular Matter 21, 31 (2019). https://doi.org/10.1007/s10035-019-0884-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0884-8

Keywords

Navigation