Skip to main content
Log in

A geometry-based algorithm for cloning real grains 2.0

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We introduce an improved version of a computational algorithm that “clones”/generates an arbitrary number of new digital grains from a sample of real digitalized granular material. Our improved algorithm produces “cloned” grains that more accurately approach the morphological features displayed by their parents. Now, the “cloned” grains were also included in a discrete element method simulation of a triaxial test and showed similar mechanical behavior compared to the one displayed by the original (parent) sample. Thus, the present work is divided in four parts. First, we compute multivariable probability density functions from the parents’ morphological parameters (morphological DNA), i.e., aspect ratio, roundness, volume-surface ratio, and particle diameter. Second, an improved, now parallelized and better tuned version of the geometric stochastic cloning algorithm (Jerves et al. in Granul Matter, 2017. https://doi.org/10.1007/s10035-017-0716-7), which is based on the aforementioned multivariable distributions and that, in the same way, introduces an enhanced radii sampling process, as well as a new quality control test based on the volume-surface ratio is discussed. Third, morphological DNA of the grains (i.e., aspect ratio, roundness, volume-surface ratio and particle diameter) is also extracted from the new “cloned” grains and compared to the one obtained from the parent sample. Fourth, clones and parents are subjected to a triaxial compression tests using a level set discrete element scheme (3DLS-DEM), and then, compared in terms of their mechanical response. Finally, the error of the “clones” in the morphology and mechanical behavior is analyzed and discussed for future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Gotechnique 29, 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  2. Cundall, P.A., Hart, R.: Numerical modeling of discontinua. Eng. Comput. 9(2), 101–113 (1972). https://doi.org/10.1108/eb023851

    Article  Google Scholar 

  3. Seyedi Hosseininia, E.: Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method. Granul. Matter 14(4), 483–503 (2012). https://doi.org/10.1016/0148-9062(88)92293-0

    Article  MATH  Google Scholar 

  4. Barla, G., Einstein, H., Kovari, K.: Manuscripts using numerical discrete element methods. Rock Mech. Rock Eng. 46(4), 655–655 (2012). https://doi.org/10.1007/s00603-013-0442-3

    Article  ADS  Google Scholar 

  5. Lu, J., Zhang, C., Jian, P.: Meso-Structure Parameters of Discrete Element Method of Sand Pebble Surrounding Rock Particles in Different Dense Degrees., pp. 871–879. Springer, Berlin (2016). https://doi.org/10.1007/978-981-10-1926-5_91

    Book  Google Scholar 

  6. Huang, X., OSullivan, C., Hanley, K., Kwok, C.: Capturing the state-dependent nature of soil response using DEM. In: Geomechanics from Micro to Macro, pp. 61–65. https://doi.org/10.1201/b17395-10 (2014)

  7. Lim, K., Andrade, J.: Granular element method for three-dimensional discrete element calculations. Int. J. Numer. Anal. Methods Geomech. 38(2), 167–188 (2013). https://doi.org/10.1002/nag.2203

    Article  Google Scholar 

  8. Lim, K., Andrade, J.: Discrete modeling of granular media: a NURBS-based approach. https://thesis.library.caltech.edu/8734/61/lim_kengwit_2015_thesis.pdf (2015)

  9. Cundall, P.: Formulation of a three-dimensional distinct element model. Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988). https://doi.org/10.1016/0148-9062(88)92293-0

    Article  Google Scholar 

  10. Vlahini, I., Kawamoto, R., And, E., Viggiani, G., Andrade, J.: From computed tomography to mechanics of granular materials via level set bridge. Acta Geotech. 12(1), 85–95 (2016). https://doi.org/10.1007/s11440-016-0491-3

    Article  Google Scholar 

  11. Andrade, J.E., Lim, K., Avila, C.F., Vlahini, I.: Granular element method for computational particle mechanics. Comput. Methods Appl. Mech. Eng. 241–244, 262–274 (2012). https://doi.org/10.1016/j.cma.2012.06.012

    Article  ADS  MATH  Google Scholar 

  12. Jerves, A., Kawamoto, R., Andrade, J.: Effects of grain morphology on critical state: a computational analysis. Acta Geotech. 11(3), 493–503 (2015). https://doi.org/10.1007/s11440-015-0422-8

    Article  Google Scholar 

  13. Khalili, M., Brisard, S., Bornert, M., Aimedieu, P., Pereira, J., Roux, J.: Discrete digital projections correlation: a reconstruction-free method to quantify local kinematics in granular media by X-ray tomography. Exp. Mech. 57(6), 819–830 (2017). https://doi.org/10.1007/s11340-017-0263-5

    Article  Google Scholar 

  14. Kim, K., Zhuang, L., Yang, H., Kim, H., Min, K.: Strength anisotropy of berea sandstone: results of X-ray computed tomography, compression tests, and discrete modeling. Rock Mech. Rock Eng. 49(4), 1201–1210 (2015). https://doi.org/10.1007/s00603-015-0820-0

    Article  ADS  Google Scholar 

  15. Fu, X., Dutt, M., Bentham, A., Hancock, B., Cameron, R., Elliott, J.: Investigation of particle packing in model pharmaceutical powders using X-ray microtomography and discrete element method. Powder Technol. 167(3), 134–140 (2006). https://doi.org/10.1016/j.powtec.2006.06.011

    Article  Google Scholar 

  16. Cundall, P.A., Hart, R.: A computer model for simulating progressive, large scale movements in blocky rock systems. In: Proceedings of the International symposium Rock Fracture, ISRM, Nancy, II-8, vol 2 (1971)

  17. ASTM: Standard Guide for Computed Tomography (CT) Imaging, ASTM Designation E 1441 - 92a. In: 1992 Annual Book of ASTM Standards, Section 3 Metals Test Methods and Analytical Procedures. ASTM, Philadelphia, pp. 690–713 (1992)

  18. Ketcham, R.A., Carlson, W.D.: Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput. Geosci. 27, 381–400 (2001)

    Article  ADS  Google Scholar 

  19. Wang, L., Park, J., Fu, Y.: Representation of real particles for DEM simulation using X-ray tomography. Constr. Build. Mater. 21(2), 338–346 (2007). https://doi.org/10.1016/j.conbuildmat.2005.08.013

    Article  Google Scholar 

  20. Jin, C., Yang, X., You, Z.: Automated real aggregate modelling approach in discrete element method based on X-ray computed tomography images. Int. J. Pavement Eng. (2015). https://doi.org/10.1080/10298436.2015.1066006

  21. Kawamoto, R., And, E., Viggiani, G., Andrade, J.: All you need is shape: Predicting shear banding in sand with LS-DEM. Journal Of The Mechanics And Physics Of Solids (2018). https://doi.org/10.1016/j.jmps.2017.10.003

  22. Kawamoto, R., And, E., Viggiani, G., Andrade, J.: Level set discrete element method for three-dimensional computations with triaxial case study (2016). https://doi.org/10.1016/j.jmps.2016.02.021

  23. Kawamoto, R., And, E., Viggiani, G., Andrade, J.: All you need is shape: predicting shear banding in sand with LS-DEM. J. Mech. Phys. Solids 111, 375–392 (2018). https://doi.org/10.1007/s11440-015-0405-9

    Article  ADS  Google Scholar 

  24. Robert, C.: Monte Carlo Methods, pp. 1–13. Wiley, New York (2016). https://doi.org/10.1002/9781118445112.stat03876.pub2

    Book  Google Scholar 

  25. Jerves, A., Kawamoto, R., Andrade, J.: A geometry-based algorithm for cloning real grains. Granul. Matter (2017). https://doi.org/10.1007/s10035-017-0716-7

  26. Mathworks.com: Parallel Computing Toolbox—MATLAB (2017). https://www.mathworks.com/products/parallel-computing.html

  27. Alba, E., Troya, J.: Analyzing synchronous and asynchronous parallel distributed genetic algorithms. Future Gener. Comput. Syst. 17(4), 451–465 (2001). https://doi.org/10.1016/s0167-739x(99)00129-6

    Article  MATH  Google Scholar 

  28. Bertsekas, D., Castaon, D.: Parallel synchronous and asynchronous implementations of the auction algorithm. Parallel Comput. 17(6–7), 707–732 (1991). https://doi.org/10.1016/s0167-8191(05)80062-6

    Article  MATH  Google Scholar 

  29. Jung, G., Gnanasambandam, N., Mukherjee, T.: Synchronous parallel processing of big-data analytics services to optimize performance in federated clouds. In: 2012 IEEE Fifth International Conference on Cloud Computing (2012) https://doi.org/10.1109/cloud.2012.108

  30. Borrelli, F., Bemporad, A., Morari, M.: Geometric algorithm for multiparametric linear programming. J. Optim. Theory Appl. 118(3), 515–540 (2003). https://doi.org/10.1023/B:JOTA.0000004869.66331.5c

    Article  MathSciNet  MATH  Google Scholar 

  31. La.mathworks.com: Interpolation Methods- MATLAB & Simulink- MathWorks America Latina. https://la.mathworks.com/help/curvefit/interpolation-methods.html. Accessed 12 Apr 2018 (2018)

  32. Grama, A., Anshul, G., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd edn. Addison-Wesley, Boston (2003)

    MATH  Google Scholar 

  33. Blaise, B.: Introduction to Parallel Computing. https://computing.llnl.gov/tutorials/parallel_comp/#Models. Accessed 3 Sep 2018 (2018)

  34. Elprin, N.: Easy Parallel Loops in Python, R, Matlab and Octave.https://blog.dominodatalab.com/simple-parallelization/. Accessed 3 Sept 2018 (2018)

  35. Hussaini, M., Leer, B., Van Rosendale, J.: Upwind and High-Resolution Schemes, p. 303. Springer, Berlin (1997)

    Book  Google Scholar 

  36. Borja, R.: J2 Plasticity, pp. 31–58. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-38547-6_3

    Book  Google Scholar 

  37. Brainerd, W.S.: Object-oriented programming. In: Guide to Fortran 2008 Programming, Springer, London (2015) https://doi.org/10.1007/978-1-4471-6759-4_12

  38. Dovey, J., Furrow, A.: Object-oriented programming. In: Beginning Objective-C, Apress, Berkeley, CA (2012). https://doi.org/10.1007/978-1-4302-4369-4_2

  39. Craig, I.: Object-Oriented Programming Languages: Interpretation (2007). https://doi.org/10.1007/978-1-84628-774-9

  40. Poo, D., Kiong, D., Ashok, S.: Object-Oriented Programming and Java (2008). https://doi.org/10.1007/978-1-84628-963-7

  41. NVIDIA Developer: CUDA Zone. https://developer.nvidia.com/cuda-zone. Accessed 2 May 2018 (2018)

  42. Zheng, J., Hryciw, R.D.: Traditional soil particle sphericity, roundness and surface roughness by computational geometry. Géotechnique 65(6), 494–506 (2015). https://doi.org/10.1680/geot.14.P.192

    Article  Google Scholar 

  43. Zheng, J., Hryciw, R.: A corner preserving algorithm for realistic DEM soil particle generation. Granul. Matter 18(4), 64 (2016). https://doi.org/10.1007/s10035-016-0679-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was possible thanks to the research computing facilities (Quinde) and advisory services offered by the Scientific Computing Laboratory of the Research Center on Mathematical Modeling: MODEMAT, Escuela Politécnica Nacional-Quito and the facilities as well as support of Yachay E.P. with their supercomputer Quinde 1 at Urcuqui, Imbabura, Ecuador. The authors also want to recognize and thank the help provided by Reid Y. Kawamoto (California Institute of Technology, USA), and Lino M. Mediavilla (Universidad San Francisco de Quito, Ecuador) without whom compiling and running the 3D LS-DEM C++ code [21] used for the triaxial compression test simulations would have not been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex X. Jerves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, D.A., Jerves, A.X. A geometry-based algorithm for cloning real grains 2.0. Granular Matter 21, 2 (2019). https://doi.org/10.1007/s10035-018-0851-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0851-9

Keywords

Navigation