Skip to main content
Log in

Merging criteria for defining pores and constrictions in numerical packing of spheres

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The void space of granular materials is generally divided into larger local volumes denoted as pores and throats connecting pores. The smallest section in a throat is usually denoted as constriction. A correct description of pores and constrictions may help to understand the processes related to the transport of fluid or fine particles through granular materials, or to build models of imbibition for unsaturated granular media. In the case of numerical granular materials involving packings of spheres, different methods can be used to compute the pore space properties. However, these methods generally induce an over-segmentation of the pore network and a merging step is usually applied to mitigate such undesirable artifacts even if a precise delineation of a pore is somewhat subjective. This study provides a comparison between different merging criteria for pores in packing of spheres and a discussion about their implication on both the pore size distribution and the constriction size distribution of the material. A correspondence between these merging techniques is eventually proposed as a guide for the user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Allen, M.P., Wilson, M.R.: Computer simulation of liquid crystals. J. Comput. Aided Mol. Des. 3(4), 335–353 (1989)

    Article  ADS  Google Scholar 

  2. Al-Raoush, R., Thompson, K., Willson, C.S.: Comparison of network generation techniques for unconsolidated porous media. Soil Sci. Soc. Am. J. 67(6), 1687–1700 (2003)

    Article  ADS  Google Scholar 

  3. Barreto Gonzalez, D.: Numerical and experimental investigation into the behaviour of granular materials under generalised stress states. Doctoral Dissertation, Imperial College London (2010)

  4. Benahmed, N., Canou, J., Dupla, J.C.: Structure initiale et propriétés de liquéfaction statique d’un sable. C. R. Méc. 332(11), 887–894 (2004)

    Article  MATH  Google Scholar 

  5. Bernhardt, M.L., Biscontin, G.: Experimental validation study of 3D direct simple shear DEM simulations. Soils Found. 56(3), 336–347 (2016)

    Article  Google Scholar 

  6. Biarez, J., Hicher, P.Y.: Classification of and Correlations Between Parameters from Elementary Mechanics of Soil Behavior, pp. 81–106. A.A. Balkema, Rotterdam (1994)

    Google Scholar 

  7. Bryant, S.L., King, P.R., Mellor, D.W.: Network model evaluation of permeability and spatial correlation in a real random sphere packing. Transp. Porous Media 11(1), 53–70 (1993)

    Article  Google Scholar 

  8. Chareyre, B., Cortis, A., Catalano, E., Barthlemy, E.: Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transp. Porous Media 94(2), 595–615 (2012)

    Article  MathSciNet  Google Scholar 

  9. Cui, L., O’Sullivan, C.: Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granul. Matter 5(3), 135–145 (2003)

    Article  MATH  Google Scholar 

  10. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  11. Edelsbrunner, H., Shah, N.R.: Incremental topological flipping works for regular triangulations. Algorithmica 15(3), 223–241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, Y.T., Owen, D.R.J.: Filling domains with disks: an advancing front approach. Int. J. Numer. Methods Eng. 56(5), 699–713 (2003)

    Article  MATH  Google Scholar 

  13. Gao, S., Meegoda, J.N., Hu, L.: Two methods for pore network of porous media. Int. J. Numer. Anal. Methods Geomech. 36(18), 1954–1970 (2012)

    Article  Google Scholar 

  14. Gervois, A., Oger, L., Richard, P., Troadec, J.P.: Voronoï and radical tessellations of packings of spheres. In: International Conference on Computational Science. Springer, Berlin, pp. 95–104 (2002)

  15. Giesche, H.: Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23(1), 9–19 (2006)

    Article  Google Scholar 

  16. Gladkikh, M., Bryant, S.: Prediction of imbibition in unconsolidated granular materials. J. Colloid Interface Sci. 288(2), 526–539 (2005)

    Article  ADS  Google Scholar 

  17. Homberg, U., Baum, D., Prohaska, S., Kalbe, U., Witt, K.J.: Automatic extraction and analysis of realistic pore structures from \(\mu \)CT data for pore space characterization of graded soil. In: Proceedings of the 6th International Conference Scour and Erosion (ICSE-6), pp. 66–73 (2012)

  18. Homberg, U., Baum, D., Wiebel, A., Prohaska, S., Hege, H.C.: Definition, extraction, and validation of pore structures in porous materials. In: Bremer, P.T., Hotz, I., Pascucci, V., Peikert, R. (eds.) Topological Methods in Data Analysis and Visualization III, pp. 235–248. Springer, Berlin (2014)

    Chapter  Google Scholar 

  19. Kenney, T., Chahal, R., Chiu, E., Ofoegbu, G., Omange, G., Ume, C.: Controlling constriction sizes of granular filters. Can. Geotech. J. 22(1), 32–43 (1985)

    Article  Google Scholar 

  20. Lindow, N., Baum, D., Hege, H.C.: Voronoï-based extraction and visualization of molecular paths. IEEE Trans. Vis. Comput. Graph. 17(12), 2025–2034 (2011)

    Article  Google Scholar 

  21. Locke, M., Indraratna, B.: A new model for the behaviour of granular filters. In: Proceedings of the Fourth Australia New Zealand Young Geotechnical Professionals Conference, vol. 147. University of Western Australia (2000)

  22. Locke, M., Indraratna, B., Adikari, G.: Time-dependent particle transport through granular filters. J. Geotech. Geoenviron. Eng. 127(6), 521–529 (2001)

    Article  Google Scholar 

  23. Mason, G., Mellor, D.W.: Simulation of drainage and imbibition in a random packing of equal spheres. J. Colloid Interface Sci. 176(1), 214–225 (1995)

    Article  ADS  Google Scholar 

  24. Mellor, D.W.: Random close packing (RCP) of equal spheres: structure and implications for use as a model porous medium. Doctoral Dissertation, Open University (1989)

  25. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Numb. Theory 30(1), 51–70 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. O’Sullivan, C., Bluthé, J., Sejpar, K., Shire, T., Cheung, L.Y.G.: Contact based void partitioning to assess filtration properties in DEM simulations. Comput. Geotech. 64, 120–131 (2015)

    Article  Google Scholar 

  27. Radjai, F., Voivret, C.: Periodic boundary conditions. In: Radjai, F., Dubois, F. (eds.) Discrete Numerical Modeling of Granular Materials, pp. 181–198. Wiley-ISTE (2011)

  28. Reboul, N., Vincens, E., Cambou, B.: A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granul. Matter 10(6), 457–468 (2008)

    Article  MATH  Google Scholar 

  29. Reboul, N., Vincens, E., Cambou, B.: A computational procedure to assess the distribution of constriction sizes for an assembly of spheres. Comput. Geotech. 37(1), 195–206 (2010)

    Article  Google Scholar 

  30. Richard, P., Oger, L., Troadec, J.P., Gervois, A.: Tessellation of binary assemblies of spheres. Physica A 259(1), 205–221 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  31. Roux, J.N., Chevoir, F.: Simulation numérique discrete et comportement mécanique des matériaux granulaires. Bull. Lab. Ponts Chaussées 254, 109 (2005)

    Google Scholar 

  32. Schuler, U.: Scattering of the composition of soils: an aspect for the stability of granular filters. Geofilters 96, 21–34 (1996)

    Google Scholar 

  33. Seblany, F., Homberg, U., Vincens, E., Winkler, P., Witt, K.J.: Merging criteria for the definition of a local pore and the CSD computation of granular materials. In: Proceedings of the 25th Meeting of European Working Group on Internal Erosion (EWGIE), Delft, pp. 150–159 (2017)

  34. Shire, T., O’Sullivan, C.: A network model to assess base-filter combinations. Comput. Geotech. 84, 117–128 (2017)

    Article  Google Scholar 

  35. Silveira, A.: An analysis of the problem of washing through in protective filters. In: Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montréal, QC, pp. 551–555 (1965)

  36. Silveira, A., de Lorena Peixoto, T., Nogueira, J.: On void size distribution of granular materials. In: Proceedings of the 5th Pan American Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, pp. 161–177 (1975)

  37. Sitharam, T.G., Dinesh, S.V., Shimizu, N.: Micromechanical modelling of monotonic drained and undrained shear behaviour of granular media using three-dimensional DEM. Int. J. Numer. Anal. Methods Geomech. 26(12), 1167–1189 (2002)

    Article  MATH  Google Scholar 

  38. Sjah, J., Vincens, E.: Determination of the constriction size distribution of granular filters by filtration tests. Int. J. Numer. Anal. Methods Geomech. 37(10), 1231–1246 (2013)

    Article  Google Scholar 

  39. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránský, J., Thoeni, K.: Yade Documentation. V. Šmilauer ed. (2010)

  40. Soria, M., Aramaki, R., Viviani, E.: Experimental determination of void size curves. In: Brauns, J., Heibaum, M., Schuler, U. (eds.) Filters in Geotechnical and Hydraulic Engineering, pp. 43–48. Balkema, Rotterdam (1993)

    Google Scholar 

  41. Sufian, A., Russell, A.R., Whittle, A.J., Saadatfar, M.: Pore shapes, volume distribution and orientations in monodisperse granular assemblies. Granul. Matter 17(6), 727–742 (2015)

    Article  Google Scholar 

  42. Thommes, M.: Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82(7), 1059–1073 (2010)

    Article  Google Scholar 

  43. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  44. Vincens, E., Witt, K.J., Homberg, U.: Approaches to determine the constriction size distribution for understanding filtration phenomena in granular materials. Acta Geotech. 10(3), 291–303 (2015)

    Article  Google Scholar 

  45. Vogel, H.J., Roth, K.: Quantitative morphology and network representation of soil pore structure. Adv. Water Resour. 24(3), 233–242 (2001)

    Article  ADS  Google Scholar 

  46. Witt, K.J.: Filtrationsverhalten und Bemessung von Erdstoff-Filtern, vol. 104. Institut für Bodenmechanik und Felsmechanik der Universität Fridericiana, Karlsruhe (1986)

    Google Scholar 

  47. Yang, R.Y., Zou, R.P., Yu, A.B.: Voronoï tessellation of the packing of fine uniform spheres. Phys. Rev. E 65(4), 041302 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Yang, R.Y., Zou, R.P., Yu, A.B., Choi, S.K.: Pore structure of the packing of fine particles. J. Colloid Interface Sci. 299(2), 719–725 (2006)

    Article  ADS  Google Scholar 

  49. Zhang, Z.P., Liu, L.F., Yuan, Y.D., Yu, A.B.: A simulation study of the effects of dynamic variables on the packing of spheres. Powder Technol. 116(1), 23–32 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Part of this work belongs to a project funded by Compagnie Nationale du Rhône (CNR). F. Seblany and E. Vincens acknowledge CNR for its interest and its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feda Seblany.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seblany, F., Homberg, U., Vincens, E. et al. Merging criteria for defining pores and constrictions in numerical packing of spheres. Granular Matter 20, 37 (2018). https://doi.org/10.1007/s10035-018-0808-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0808-z

Keywords

Navigation