Skip to main content
Log in

Scale-up study of high-shear fluid-particle mixing based on coupled SPH/DEM simulation

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The purpose of this work is to study the similarity behavior of high-shear fluid-particle interaction with numerical simulations. Specifically, we demonstrate the process in vessels with four-blade impellers. Through the study, we provide guidance for practices scaling from lab tests to industrial level, which is a major interest in industry when computer capacity is limited and large scale tests are prohibitive. The numerical simulation is based on a coupling technique of SPH and DEM. Scale-up tests for particles as well as mixers are presented to illustrate the similarity behavior under certain scaling conditions. We examine the effects when multiple types of particles are included in the fluid as well. Through the tests, similarity behavior is observed in several aspects, such as particle distribution in number, velocity, energy, mass and volume. The results indicate that using less particles to reproduce the original system is a feasible practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bertrand, F., Leclaire, L., Levecque, G.: Dem-based models for the mixing of granular materials. Chem. Eng. Sci. 60(8–9), 2517–2531 (2005)

    Article  Google Scholar 

  2. Chaudhuri, B., Mehrotra, A., Muzzio, F., Tomassone, M.: Cohesive effects in powder mixing in a tumbling blender. Powder Technol. 165(2), 105–114 (2006)

    Article  Google Scholar 

  3. Cleary, P.: Modelling confined multi-material heat and mass flows using sph. Appl. Math. Model. 22(12), 981–993 (1998)

    Article  Google Scholar 

  4. Cleary, P.: Prediction of coupled particle and fluid flows using dem and sph. Miner. Eng. 73, 85–99 (2015)

    Article  Google Scholar 

  5. Cooper, S., Coronella, C.: Cfd simulations of particle mixing in a binary fluidized bed. Powder Technol. 151(1–3), 27–36 (2005)

    Article  Google Scholar 

  6. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  7. Dury, C., Ristow, G.: Radial segregation in a two-dimensional rotating drum. J. de Physique I 7(5), 737–745 (1997)

    ADS  MathSciNet  Google Scholar 

  8. Ghaboussi, J., Barbosa, R.: Three-dimensional discrete element method for granular materials. Int. J. Numer. Anal. Method Geomech. 14(7), 451–472 (1990)

    Article  Google Scholar 

  9. Gingold, R., Monaghan, J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  ADS  MATH  Google Scholar 

  10. Glicksman, L.: Scaling relationships for fluidized beds. Chem. Eng. Sci. 39(9), 1373–1379 (1984)

    Article  Google Scholar 

  11. Glicksman, L., Hyre, M., Woloshun, K.: Simplified scaling relationships for fluidized beds. Powder Technol. 77(2), 177–199 (1993)

    Article  Google Scholar 

  12. Gui, N., Fan, J., Cen, K.: A macroscopic and microscopic study of particle mixing in a rotating tumbler. Chem. Eng. Sci. 65(10), 3034–3041 (2010)

    Article  Google Scholar 

  13. Harnby, N., Edwards, M., Nienow, A.: Mixing in the Process Industries, 2nd edn. Butterworth-Heinemann, Oxford (1997)

    Google Scholar 

  14. Jajcevica, D., Siegmanna, E., Radekea, C., Khinast, J.: Large-scale cfd-dem simulations of fluidized granular systems. Chem. Eng. Sci. 98, 298–310 (2013)

    Article  Google Scholar 

  15. Ladd, A., Verberg, R.: Lattice-boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104(5), 1191–1251 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lan, Y., Rosato, A.: Macroscopic behavior of vibrating beds of smooth inelastic spheres. Phys. Fluids 7(8), 1818–1831 (1995)

    Article  ADS  Google Scholar 

  17. Leonardi, A., Wittel, F., Mendoza, M., Herrmann, H.: Coupled dem-lbm method for the free-surface simulation of heterogeneous suspensions. Comput. Part. Mech. 1(1), 3–13 (2014)

    Article  Google Scholar 

  18. Liu, G., Liu, M.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  19. Liu, H., Tafti, D., Li, T.: Hybrid parallelism in mfix cfd-dem using openmp. Powder Technol. 259, 22–29 (2014)

    Article  Google Scholar 

  20. Liu, P., Yang, R., Yu, A.: Dem study of the transverse mixing of wet particles in rotating drums. Chem. Eng. Sci. 86, 99–107 (2013)

    Article  Google Scholar 

  21. Metcalfe, G., Shinbrot, T., McCarthy, J., Ottino, J.: Avalanche mixing of granular solids. Nature 374(6517), 39–41 (1995)

    Article  ADS  Google Scholar 

  22. Monaghan, J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992)

    Article  ADS  Google Scholar 

  23. Monaghan, J.: Smoothed particle hydrodynamics. Rep. Progress Phys. 68, 1703–1759 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Monaghan, J., Gingold, R.: Shock simulation by the particle method sph. J. Comput. Phys. 52(2), 374–389 (1983)

    Article  ADS  MATH  Google Scholar 

  25. Mora, P., Place, D.: Simulation of the frictional stick-slip instability. Pure Appl. Geophys. 143(1), 61–87 (1994)

    Article  ADS  Google Scholar 

  26. Nguyena, D., Rasmusona, A., Bjorn, I., Thalberg, K.: Cfd simulation of transient particle mixing in a high shear mixer. Powder Technol. 258, 324–330 (2014)

    Article  Google Scholar 

  27. Ommen, J., Teuling, M., Nijenhuis, J., Wachem, B.: Computational validation of the scaling rules for fluidized beds. Powder Technol. 163, 32–40 (2006)

    Article  Google Scholar 

  28. Radeke, C., Glasser, B., Khinast, J.: Large-scale powder mixer simulations using massively parallel gpu architectures. Chem. Eng. Sci. 65(24), 6435–6442 (2010)

    Article  Google Scholar 

  29. Rayleigh, L.: Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. P. Lond. Math. Soc. 14, 170–177 (1883)

    MathSciNet  MATH  Google Scholar 

  30. Robinson, M., Ramaioli, M., Luding, S.: Fluid-particle flow simulations using two-way-coupled mesoscale sph-dem and validation. Int. J. Multiph. Flow 59, 121–134 (2014)

    Article  Google Scholar 

  31. Silbert, L., Ertas, D., Grest, G., Halsey, T., Levine, D., Plimpton, S.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

    Article  ADS  Google Scholar 

  32. Stevens, A., Hrenya, C.: Comparison of soft-sphere models to measurements of collision properties during normal impacts. Powder Technol. 154(2–3), 99–109 (2005)

    Article  Google Scholar 

  33. Sun, X., Sakai, M., Yamada, Y.: Three-dimensional simulation of a solid-liquid flow by the dem-sph method. J. Comput. Phys. 248, 147–176 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tardos, G., Hapgood, K., Ipadeola, O., Michaels, J.: Stress measurements in high-shear granulators using calibrated "test" particles: application to scale-up. Powder Technol. 140, 217–227 (2004)

    Article  Google Scholar 

  35. Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. P. R. Soc. A Math. Phys. 201, 192–196 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Tsuji, Y., Kawaguchi, T., Tanaka, T.: Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77(1), 79–87 (1993)

    Article  Google Scholar 

  37. Zhu, H., Zhou, Z., Yang, R., Yu, A.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of an ongoing project which is funded by U.S. Air Force(Grant No. AF14-AT22). The financial support is greatly appreciated. The author also thank the Extreme Science and Engineering Discovery Environment(XSEDE) for providing the access to the clusters for numerical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Tong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Q., Zhu, S. & Yin, H. Scale-up study of high-shear fluid-particle mixing based on coupled SPH/DEM simulation. Granular Matter 20, 34 (2018). https://doi.org/10.1007/s10035-018-0807-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0807-0

Keywords

Navigation