Skip to main content
Log in

Investigation on shear modulus and damping ratio of transparent soils with different pore fluids

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Transparent soil, manufactured with transparent granular particles and pore fluid with matching refractive index, used to mimic the behavior of natural saturated soil, is widely used in visualization model tests. The properties of transparent soils are not only affected by granular particles’ characteristics, but also influenced by pore fluids’ characteristics. However, the researches focused on the dynamic properties of transparent soil influenced by pore fluids are relatively rare in the literature. In this paper, the dynamic shear modulus and damping ratios of transparent soils manufactured by fused quartz and three different pore fluids (mixed oil, calcium bromide \((\hbox {CaBr}_{2})\) solution, and sucrose solution) were measured through a series of resonant column tests and dynamic torsional shear tests. The laboratory tests on dry fused quartz specimens were also carried out for comparative analysis. It is found that the transparent soils have a certain similar dynamic behaviors as those of natural soil, and the values of dynamic shear modulus and damping ratios are influenced by pore fluids. With the test results, transparent soil manufactured by fused quartz and mixed oil shows a great potential as a substitute for natural sand and is expected to be widely used in dynamic model tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Serrano, R.F., Iskander, M., Tabe, K.: 3D contaminant flow imaging in transparent granular porous media. Geotech. Lett. 1(3), 71–78 (2011)

    Article  Google Scholar 

  2. An, Z.F., Krueger, P.S., El Shamy, U.: Direct velocity and shear-stress measurements in shear-induced erosion of a particle bed. Geotech. Test. J. 38(5), 739–751 (2015)

    Article  Google Scholar 

  3. Hover, E.D., Ni, Q., Guymer, I.: Investigation of centerline strain path during tube penetration using transparent soil and particle image velocimetry. Geotech. Lett. 3(2), 37–41 (2013)

    Article  Google Scholar 

  4. Sun, J.L., Liu, J.Y.: Visualization of tunneling-induced ground movement in transparent sand. Tunn. Undergr. Space Technol. 40, 236–240 (2014)

    Article  Google Scholar 

  5. Ezzein, F.M., Bathurst, R.J.: A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil. Geotext. Geomembr. 42, 246–255 (2014)

    Article  Google Scholar 

  6. Bathurst, R.J., Ezzein, F.M.: Geogrid and soil displacement observations during pullout using a transparent granular soil. Geotech. Test. J. 38(5), 673–685 (2015)

    Article  Google Scholar 

  7. Black, J.A.: Centrifuge modelling with transparent soil and laser aided imaging. Geotech. Test. J. 38(5), 631–644 (2015)

    Google Scholar 

  8. Ferreira, J.A.Z., Zornberg, J.G.: A transparent pullout testing device for 3D evaluation of soil-geogrid interaction. Geotech. Test. J. 38(5), 686–707 (2015)

    Article  Google Scholar 

  9. Sui, W.H., Qu, H., Gao, Y.: Modeling of grout propagation in transparent replica of rock fractures. Geotech. Test. J. 38(5), 765–773 (2015)

    Article  Google Scholar 

  10. Gao, Y., Sui, W.H., Liu, J.Y.: Visualization of chemical grout permeation in transparent soil. Geotech. Test. J. 38(5), 774–786 (2015)

    Article  Google Scholar 

  11. Kashuk, S., Mercurio, S.R., Iskander, M.: Methodology for optical imaging of NAPL 3D distribution in transparent porous media. Geotech. Test. J. 38(5), 603–619 (2015)

    Article  Google Scholar 

  12. Siemens, G.A., Mumford, K.G., Kucharczuk, D.: Characterization of transparent soil for use in heat transport experiments. Geotech. Test. J. 38(5), 620–630 (2015)

    Article  Google Scholar 

  13. Black, J.A., Tatari, A.: Transparent soil to model thermal processes: an energy pile example. Geotech. Test. J. 38(5), 752–764 (2015)

    Google Scholar 

  14. Wallace, J.F., Rutherford, C.J.: Geotechnical properties of LAPONITE RD. Geotech. Test. J. 38(5), 574–587 (2015)

    Article  Google Scholar 

  15. Iskander, M., Bathurst, R.J., Omidvar, M.: Past, present, and future of transparent soils. Geotech. Test. J. 38(5), 557–573 (2015)

    Article  Google Scholar 

  16. Iskander, M., Lai, J., Oswald, C., Mainnheimer, R.: Development of a transparent material to model the geotechnical properties of soils. Geotech. Test. J. 17(4), 425–433 (1994)

    Article  Google Scholar 

  17. Iskander, M., Liu, J., Sadek, S.: Transparent silica gel to model the geotechnical properties of sand. Int. J. Phys. Modell. Geotech. 2(4), 27–40 (2002)

    Article  Google Scholar 

  18. Zhao, H.H., Ge, L.: Investigation on the shear moduli and damping ratios of silica gel. Granul. Matter 16, 449–56 (2014)

    Article  Google Scholar 

  19. Liu, J., Iskander, M.: Modelling capacity of transparent soil. Can. Geotech. J. 47(4), 451–460 (2010)

    Article  Google Scholar 

  20. Ni, Q., Hird, C.C., Guymer, I.: Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry. Geotechnique 60(2), 121–132 (2010)

    Article  Google Scholar 

  21. Ahmed, M., Iskander, M.: Analysis of tunneling-induced ground movements using transparent soil models. J. Geotech. Geoenviron. Eng. 137(5), 525–535 (2011)

    Article  Google Scholar 

  22. Iskander, M.: Modeling with Transparent Soils, Visualizing Soil Structure Interaction and Multi Phase Flow, Non-intrusively. Springer, New York (2010)

    Google Scholar 

  23. Ezzein, F.M., Bathurst, R.J.: A transparent sand for geotechnical laboratory modeling. Geotech. Test. J. 34(6), 1–12 (2011)

    Google Scholar 

  24. Guzman, I.L., Iskander, M., Suescun-Florez, E., Omidvar, M.: A transparent aqueous-saturated sand surrogate for use in physical modeling. Acta Geotechnica 9, 187–206 (2014)

    Article  Google Scholar 

  25. Carvalho, T., Suescun, E., Omidvar, M., Iskander, M.: A nonviscous water-based pore fluid for modeling with transparent soils. Geotech. Test. J. 38(5), 805–811 (2015)

    Article  Google Scholar 

  26. Cao, Z.H., Liu, J.Y., Liu, H.L.: Transparent fused silica to model natural sand. Pan-Am CGS Geotechnical Conference (2011)

  27. Zhao, H.H., Ge, L., Luna, R.: Low viscosity pore fluid to manufacture transparent soil. Geotech. Test. J. 33(6), 1–6 (2010)

    Google Scholar 

  28. ASTM, Standard D 2488: Standard practice for description and identification of soils (Visual-manual procedure). Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA (2009)

  29. ASTM, Standard D 4015: Standard test methods for modulus and damping of soils by resonant-column method. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA (2007)

  30. ASTM, STP 1213: Dynamic geotechnical testing II. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA (1994)

  31. Georgiannou, V.N., Tsomokos, A., Stavrou, K.: Monotonic and cyclic behavior of sand under torsional loading. Geotechnique 58(2), 113–124 (2008)

    Article  Google Scholar 

  32. Stokoe, K.H., II Darendeli, M.B., Andrus, R.D., Brown, L.T.: Dynamic soil properties: Laboratory, field and correlation studies. In: Proceedings of 2nd International Conference on Earthquake Geotechnical Engineering, vol. 3, pp. 811–845, Lisbon, Portugal (1999)

  33. Borden, R.H., Shao, L., Gupta, A.: Dynamic properties of piedmont residual soils. J. Geotech. Eng. 122(10), 813–821 (1996)

    Article  Google Scholar 

  34. Rowe, P.W.: Theoretical meaning and observed values of deformation parameters for soil. In: Parry, R.H.G. (ed.) Stress-Strain Behavior of Soils, Proceedings of Roscoe Memorial Symposium, pp. 143-194. Cambridge University, CA (1971)

  35. Chung, R.M., Yokel, F.Y., Drnevich, V.P.: Evaluation of dynamic properties of sands by resonant column testing. Geotech. Test. J. 7(2), 60–69 (1984)

    Article  Google Scholar 

  36. Rollins, K.M., Evans, M.D., Diehl, N.B., Daily, W.D.: Shear modulus and damping relationships for gravel. J. Geotech. Geoenviron. Eng. 124(5), 396–405 (1998)

    Article  Google Scholar 

  37. Seed, H.B., Idriss, I.M.: Soil moduli and damping factors for dynamic response analysis. Report No. EERC 70–10, Earthquake Engineering Research Centre, University of California, Berkeley, CA (1970)

  38. Vucetic, M., Dorbry, R.: Effect of soil plasticity on cyclic response. J. Geotech. Eng. 117(1), 89–107 (1991)

    Article  Google Scholar 

  39. Zhang, J.F., Andrus, R.D., Juang, C.H.: Normalized shear modulus and material damping ratio relationships. J. Geotech. Geoenviron. Eng. 131(4), 453–464 (2005)

    Article  Google Scholar 

  40. Seed, H.B., Wong, R.T., Idriss, I.M., Tokimatsu, K.: Moduli and damping factors for dynamic analysis of cohesionless soils. J. Geotech. Eng. 112(11), 1016–1032 (1986)

    Article  Google Scholar 

  41. Ishibashi, I., Zhang, X.J.: Unified dynamic shear moduli and damping ratios of sand and clay. Soils Found. 33(1), 182–191 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Science Foundation of China (Nos. 51478165, 51306080), and the fundamental research funds for the central universities of China (Nos. 2013B31814, 2017B12114). We are grateful to Dr. JiLiang Li from Purdue University Northwest-Westville Campus for his help in English paper writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangqiang Kong.

Ethics declarations

Conflict of interest

The authors state that this article has no conflict of interest with anybody or any organizations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, G., Li, H., Yang, G. et al. Investigation on shear modulus and damping ratio of transparent soils with different pore fluids. Granular Matter 20, 8 (2018). https://doi.org/10.1007/s10035-017-0779-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0779-5

Keywords

Navigation