Skip to main content
Log in

Indirect measurement of \(\mu (I)\) relation from finite granular avalanche down an inclined narrow reservoir of smooth bed

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This work examines the algebraic \(\mu -I\) relation proposed for steady uniform dry granular flows via unsteady granular avalanche experiments of finite nearly identical dry glass spheres down an inclined narrow reservoir of smooth bed. Lateral high-speed digital imaging permits particle tracking velocimetry with which we can evaluate bulk local instantaneous volume fraction and velocity components to conduct a quasi-two-dimensional control volume analysis of streamwise momentum assuming an internal shear stress based on the \(\mu -I\) rheology, a hydrostatic normal stress and a Coulomb yielding condition at lateral walls. Hence, the desired \(\mu \) is a function of flow dynamics and a wall friction coefficient \(\mu _w\). Complementary sliding table experiments were conducted to estimate an upper bound of \(\mu _w=0.17\) which was used with a chosen nonzero lower bound \(\mu _w=0.05\) to extract possible range of \(\mu \) at a local instantaneous inertial number I. The so-obtained local instantaneous \(\mu -I\) data conform to the non-linear monotonically increasing trend proposed for steady inertial flows above a crossover value \(I_c\approx 0.03\). Below \(I_c\), a peculiar segment of decaying \(\mu \) with I was revealed agreeing to the rheology tests in quasi-static regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65(1), 011304 (2001)

    Article  ADS  Google Scholar 

  2. Aranson, I.S., Tsimring, L.S., Malloggi, F., Clément, E.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 78(3), 031303 (2008)

    Article  ADS  Google Scholar 

  3. Artoni, R., Santomaso, A.C., Massimiliano, Go, Canu, P.: Scaling laws for the slip velocity in dense granular flows. Phys. Rev. Lett. 108(23), 238002 (2012)

    Article  ADS  Google Scholar 

  4. Chevoir, F., Roux, J.-N., Da Cruz, F., Rognon, P.-G., Koval Jr., G.: Friction law in dense granular flows. Powder Technol. 190(1), 264–268 (2009)

    Article  Google Scholar 

  5. Cortet, P.P., Bonamy, D., Daviaud, F., Dauchot, O., Dubrulle, B., Renouf, M.: Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow. Europhys. Lett. 88(1), 14001 (2009)

    Article  ADS  Google Scholar 

  6. Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    Article  ADS  Google Scholar 

  7. Forterre, Y., Pouliquen, O.: Long-surface-wave instability in dense granular flows. J. Fluid Mech. 486, 21–50 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Guler, M., Edil, T.B., Bosscher, P.J.: Measurement of particle movement in granular soils using image analysis. J. Comput. Civ. Eng. 13(2), 116–122 (1999)

    Article  Google Scholar 

  9. Hough, P.V.C.: Method and means for recognizing complex patterns. US Patented, 3069654 (1962)

  10. Johnson, P.C., Jackson, R.: Friction akollisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)

    Article  ADS  Google Scholar 

  11. Johnson, P.C., Nott, P., Jackson, R.: Frictional-collisional equations of motion for particulate flows and their application to chutes. J. Fluid Mech. 210, 501–535 (1990)

    Article  ADS  Google Scholar 

  12. Jop, P., Forterre, Y., Pouliquen, O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167–192 (2005)

    Article  ADS  MATH  Google Scholar 

  13. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  14. Kuwano, O., Hatano, T.: Flash weakening is limited by granular dynamics. Geophys. Res. Lett. 38(17), L17305 (2011)

    Article  ADS  Google Scholar 

  15. Kuwano, O., Ando, R., Hatano, T.: Crossover from negative to positive shear rate dependence in granular friction. Geophys. Res. Lett. 40(7), 1295–1299 (2013)

    Article  ADS  Google Scholar 

  16. Lacaze, L., Kerswell, R.R.: Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett. 102(10), 108305 (2009)

    Article  ADS  Google Scholar 

  17. Lu, K., Brodsky, E.E., Kavehpour, H.P.: Shear-weakening of the transitional regime for granular flow. J. Fluid Mech. 587, 347–372 (2007)

    Article  ADS  MATH  Google Scholar 

  18. Lun, C.K.K., Savage, S.B., Jeffrey, D.J., Chepurni, N.: Kinetic theories for granular flow : inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140, 223–256 (1984)

    Article  ADS  MATH  Google Scholar 

  19. Marone, C.: Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26(1), 643–696 (1998)

    Article  ADS  Google Scholar 

  20. Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Article  Google Scholar 

  21. Mills, P., Loggia, D., Tixier, M.: Model for a stationary dense granular flow along an inclined wall. Europhys. Lett. 45(6), 733–738 (1999)

    Article  ADS  Google Scholar 

  22. Orpe, A.V., Khakhar, D.V.: Rheology of surface granular flows. J. Fluid Mech. 571, 1–32 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Pouliquen, O.: Scaling laws in granular flows down rough inclined plane. Phys. Fluids 11(3), 542–548 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid. Mech. 453, 131–151 (2002)

    Article  ADS  MATH  Google Scholar 

  25. Renouf, M., Bonamy, D., Dubois, D., Alart, P.: Numerical simulation of two-dimensional steady granular flows in rotating drum: on surface flow rheology. Phys. Fluids 17(10), 103303 (2005)

    Article  ADS  MATH  Google Scholar 

  26. Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

    Article  ADS  Google Scholar 

  27. Sümer, B., Sitti, M.: Rolling and spinning friction characterization of fine particles using lateral force microscopy based contact pushing. Granul. Matter 22, 481–506 (2008)

    Google Scholar 

  28. Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J.M., Jenkins, J.T., Delannay, R.: Superstable granular heap in a thin channel. Phys. Rev. Lett. 91(26), 264301 (2003)

    Article  ADS  Google Scholar 

  29. Weinhart, T., Hartkamp, R., Thornton, A.R., Luding, S.: Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25, 070605 (2013)

    Article  ADS  Google Scholar 

  30. Yazid, H., Yazid, H., Harun, M., Mohd, S., Aziz Mohamed, A., Rizon, M., Sayuti, S.: Circular discontinuities detection in welded joints using Circular Hough Transform. Phys. Fluids 40(8), 594–601 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the Ministry of Science and Technology of Taiwan (102-2221-E-002-083-MY2 and 103-2221-E-002-174-MY2) and National Taiwan University (103R891703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ling Yang.

Ethics declarations

Conflict of interest

The authors have no affiliation with a financial or non-financial interest in the subject matter or material discussed in this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 627 KB)

Appendix

Appendix

This appendix describes how we estimated the variation of U across the current reservoir width, w / D = 9.4, based on the experimental results by Jop et al. [12]. These authors report the surface velocity for a steady heap flow across a channel of various widths, w / D=19-570, and the maximum and minimum velocity were measured at the flow center line, \(U_c\), and at the sidewalls, \(U_w\), respectively. Based on Fig. 3a therein, we measured both \(U_c\) and \(U_w\) to compute a surface velocity decay percentage by \(\varepsilon \%=(U_c-U_w)/U_c \times 100\%\) for each examined width. The obtained \(\varepsilon \%\) is examined with respect to w / D in Fig. 12 showing monotonic decrease with w / D but at a much pronounced degree at small w / D. This trend suggests a milder velocity variation across a narrower channel width since a greater portion of the flowing mass is under the influence of lateral wall friction. We used the data from the narrowest two channel widths, w / D = 19 and 57, to extrapolate the decay percentage for the current reservoir width to obtain \(\varepsilon \%\approx 7\%\) which value led to the assumption of nearly two-dimensional flow in the control volume analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YT., Yang, FL. & Lin, SR. Indirect measurement of \(\mu (I)\) relation from finite granular avalanche down an inclined narrow reservoir of smooth bed. Granular Matter 19, 51 (2017). https://doi.org/10.1007/s10035-017-0736-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0736-3

Keywords

Navigation