Skip to main content
Log in

Sequential sphere packing by trilateration equations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Specimen generation by packing of particles is the initial step in most numerical simulations for discrete media. In many cases, especially for virtual soil compaction, filtration, or penetration tests, this preparation work is essential for the success of the tests because the discrete particles are not able to be redistributed during the simulation. This paper presents a novel sphere sequential packing method for specimen generation using the trilateration method and its relevant equations. The method is developed on an assumption that spherical particles must be in contact with at least three neighbour particles to be kept in balance. This semi-analytical method has three advantages: quick generation speed, adjustable porosity, and good control over the spatial distribution of particles at local scale. This paper is a study on two typical spatial distributions: (1) layer-wise, where particles with similar sizes have priority of being positioned next to each other; and (2) discrete, where small particles are located preferentially in between large particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. O’Sullivan, C.: Particulate Discrete Element Modelling: A Geomechanics Perspective. Applied Geotechnics. Spon Press/Taylor, Francis (2011)

    Google Scholar 

  2. Matuttis, H., Luding, S., Herrmann, H.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109(1), 278 (2000)

    Article  Google Scholar 

  3. Reboul, N., Vincens, E., Cambou, B.: A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granul. Matter. 10(6), 457 (2008)

    Article  MATH  Google Scholar 

  4. Shire, T., O’Sullivan, C.: Micromechanical assessment of an internal stability criterion. Acta Geotech. 8(1), 81 (2013)

    Article  Google Scholar 

  5. Winkler, P., Sadaghiani, M.S., Jentsch, H., Witt, K.: Scour and Erosion. In: Proceedings of the 7th International Conference on Scour and Erosion, Perth, Australia, 2–4 December 2014. CRC Press, p. 345 (2014)

  6. Ogarko, V.A.: Microstructure and Macroscopic Properties of Polydisperse Systems of Hard Spheres. Universiteit Twente, Enschede (2014)

    Book  Google Scholar 

  7. Bagi, K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7(1), 31 (2005)

    Article  MATH  Google Scholar 

  8. Bezrukov, A., Bargieł, M., Stoyan, D.: Statistical analysis of simulated random packings of spheres. Part. Part. Syst. Charact. 19(2), 111 (2002)

    Article  Google Scholar 

  9. Rodriguez, J., Allibert, C., Chaix, J.: A computer method for random packing of spheres of unequal size. Powder Technol. 47(1), 25 (1986)

    Article  Google Scholar 

  10. Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1), 320 (2009)

    Article  Google Scholar 

  11. Sherwood, J.: Packing of spheroids in three-dimensional space by random sequential addition. J. Phys. A Math. Gen. 30(24), L839 (1997)

    Article  ADS  Google Scholar 

  12. Buechler, S., Johnson, S.: Efficient generation of densely packed convex polyhedra for 3D discrete and finite-discrete element methods. Int. J. Numer. Meth. Eng. 94(1), 1 (2013)

    Article  MathSciNet  Google Scholar 

  13. Oñate, E., Idelsohn, S., Celigueta, M., Rossi, R., Marti, J., Carbonell, J., Ryzhakov, P., Suárez, B.: Particle-Based Methods, pp. 1–49. Springer, Berlin (2011)

  14. Galindo-Torres, S., Pedroso, D., Williams, D., Li, L.: Breaking processes in three-dimensional bonded granular materials with general shapes. Comput. Phys. Commun. 183(2), 266 (2012)

    Article  ADS  Google Scholar 

  15. To, H.D., Torres, S.A.G., Scheuermann, A.: Primary fabric fraction analysis of granular soils. Acta Geotech. 10(3), 375–387 (2015)

    Article  Google Scholar 

  16. To, H.D., Galindo-Torres S.A.: Dem gasket website. https://code.google.com/p/dem-gasket/ (2014)

  17. Mechsys website. http://mechsys.nongnu.org/index.shtml (2014)

  18. Fang, B.T.: Trilateration and extension to global positioning system navigation. J. Guid. Control Dyn. 9(6), 715 (1986)

    Article  ADS  Google Scholar 

  19. Silveira, A., de Lorena Peixoto, T., Nogueira, J.: In: Proceedings of the 5th Pan-American Conference on Soil Mechanics and Foundation Engineering, Buenos Aires , pp. 161–176 (1975)

  20. To, H.D., Scheuermann, A., Williams, D.J.: In: 6th International Conference on Scour and Erosion (ICSE-6) (Société Hydrotechnique de France (SHF) ), pp. 295–303 (2012)

  21. Langlet, G.: A new fast direct solution to the problem of the sphere tangent to four spheres. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 35(5), 836 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  22. Sickafus, E., Mackie, N.: Interstitial space in hardsphere clusters. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 30(6), 850 (1974)

    Article  ADS  Google Scholar 

  23. Lagarias, J.C., Mallows, C.L., Wilks, A.R.: Beyond the Descartes Circle Theorem. Am. Math. Mon. 109(4), 338–361 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Galindo-Torres, S., Muñoz, J., Alonso-Marroquin, F.: Minkowski-Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils. Phys. Rev. E 82(5), 056713 (2010)

  25. D’Addetta, G.A.: Discrete models for cohesive frictional materials. Dissertation for Dr. Ing (PhD in Engineering), Stuttgart University, Stuttgart, Germany. http://elib.uni-stuttgart.de/bitstream/11682/206/1/diss_gad.pdf (2004)

  26. O’Sullivan, C., Bray, J.D.: Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Eng. Comput. 21(2/3/4), 278 (2004)

    Article  MATH  Google Scholar 

  27. Galindo-Torres, S., Scheuermann, A., Mühlhaus, H., Williams, D.: A micro-mechanical approach for the study of contact erosion. Acta Geotech. 10(3), 357–368 (2015)

    Article  Google Scholar 

  28. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47 (1979)

    Article  Google Scholar 

  29. Green, S.: Particle simulation using cuda, NVIDIA Whitepaper (2010)

  30. Xu, J., Qi, H., Fang, X., Lu, L., Ge, W., Wang, X., Xu, M., Chen, F., He, X., Li, J.: Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing. Particuology 9(4), 446 (2011)

    Article  Google Scholar 

  31. Thornton, A., Weinhart, T., Luding, S., Bokhove, O.: Modeling of particle size segregation: calibration using the discrete particle method. Int. J. Mod. Phys. C 23(08), 1240014 (2012)

    Article  ADS  Google Scholar 

  32. Saucke, U., Brauns, J., Schuler, U.: Zur Entmischungsneigung körniger Schüttstoffe. Geotechnik Zeitschrift 22, 259 (1999)

    Google Scholar 

  33. Chang, C.S., Misra, A.: Packing structure and mechanical properties of granulates. J. Eng. Mech. 116(5), 1077 (1990)

    Article  Google Scholar 

  34. Oda, M., Nemat-Nasser, S., Mehrabadi, M.: A statistical study of fabric in a random assembly of spherical granules. Int. J. Numer. Anal. Meth. Geomech. 6(1), 77 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Powell, M.: Computer-simulated random packing of spheres. Powder Technol. 25(1), 45 (1980)

    Article  Google Scholar 

  36. Kumar, N., Imole, O.I., Magnanimo, V., Luding, S.: Advanced Materials Research, vol. 508, pp. 160–165. Trans Tech Publ, Clausthal-Zellerfeld (2012)

    Google Scholar 

  37. Göncü, F., Luding, S.: Effect of particle friction and polydispersity on the macroscopic stress–strain relations of granular materials. Acta Geotech. 8(6), 629 (2013)

    Article  Google Scholar 

  38. An, X., Yang, R., Zou, R., Yu, A.: Effect of vibration condition and inter-particle frictions on the packing of uniform spheres. Powder Technol. 188(2), 102 (2008)

    Article  Google Scholar 

  39. Budhu, M.: Soil Mechanics and Foundations (With CD). Wiley, New York (2011)

    Google Scholar 

  40. Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenvironmental Eng. 132(5), 591 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The first author was granted a scholarship from the Vietnamese Ministry of Education and Training (MOET). The support from Australian Research Council (ARC) through the Discovery Grant (DP120102188) Hydraulic erosion of granular structures: experiments and computational simulations is gratefully acknowledged. The simulations were based on Mechsys, an open source library and carried out using the Macondo Cluster from the School of Civil Engineering at The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu Duc To.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

To, H.D., Galindo-Torres, S.A. & Scheuermann, A. Sequential sphere packing by trilateration equations. Granular Matter 18, 70 (2016). https://doi.org/10.1007/s10035-016-0666-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0666-5

Keywords

Navigation