Skip to main content
Log in

An analytical framework for evaluating the cohesion effects of coalescence between capillary bridges

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this work, we analyse the physical consequences of capillary bridges coalescence between spherical particles agglomerates and more particularly the jump of the capillary force. By referring to Murase et al. (Adv Powder Technol 19(4):349–367, 2008) and Rynhart et al. (Res Lett Inf Math Sci 5:119–127, 2003) about bridges adhered to three particles, we analyse the effects of coalescense between three bridges with two grains and a bridge joining three grains. This monographic synthesis intends to explain analytically and geometrically the significant increase of the inter-particle force, a strengthening cohesion effect, experimentally observed, reported and still largely unelucidated to our knowledge in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The coefficient \(\sqrt{3}\) comes from the composition rule of the forces inclined of a \(\pi /3\) angle with respect to the vertical.

  2. Independent of the coordinate system that is chosen.

  3. This value corresponds to \(4\pi r \sin \pi /6\).

  4. Whose vertex is the center of the upper sphere and the other direction given by the vertical.

  5. Characterized by the well-known relations \(s=0\) and \(y_{\delta }^{*}=r\sin \delta \ \sin \left( \delta +\theta \right) \).

  6. By geometrical construction by dividing the major axis in three equal parts.

References

  1. Aarts, D.G., Lekkerkerker, H.N., Guo, H., Wegdam, G.H., Bonn, D.: Hydrodynamics of droplet coalescence. Phys. Rev. Lett. 95(16), 164503 (2005). http://eudml.org/doc/112068

  2. Alberti, G., DeSimone, A.: Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Ration. Mech. Anal. 202(1), 295–348 (2011)

  3. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  4. Decent, S.P., Sharpe, G., Shaw, A.J., Suckling, P.M.: The formation of a liquid bridge during the coalescence of drops. Int. J. Multiph. Flow 32(6), 717–738 (2006)

    Article  MATH  Google Scholar 

  5. Delaunay, C.H.: Sur la surface de révolution dont la courbure moyenne est constante. J. Math. Pures Appl. 6, 309–314 (1841)

    Google Scholar 

  6. De Souza, E.J., Brinkmann, M., Mohrdieck, C., Arzt, E.: Enhancement of capillary forces by multiple liquid bridges. Langmuir 24(16), 8813–8820 (2008)

    Article  Google Scholar 

  7. Eells, James: The surfaces of Delaunay. Math. Intell. 9(1), 53–57 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eggers, J., Lister, J.R., Stone, H.A.: Coalescence of liquid drops. J. Fluid Mech. 401, 293–310 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gagneux, G., Millet, O.: Analytic calculation of capillary bridges properties deduced as an inverse problem from experimental data. Transp. Porous Media (2014). doi:10.1007/s11242-014-0363-y

    MathSciNet  Google Scholar 

  10. Gagneux, G., Millet, O.: Discrete mechanics of capillary bridges. Iste-Wiley Publ., Discrete Granular Mechanics Series (in preparation)

  11. Gras, J.-P..: Approche micromécanique de la capillarité dans les milieux granulaires : rétention d’eau et comportement mécanique. Ph.D. Thesis University of Montpellier 2 (2011)

  12. Hueckel, T., Mielniczuk, B., El Youssoufi, M.S.: Micro-scale study of rupture in desiccating granular media, Geotechnical Special Publication GSP 231, Geo-Congress 2013, San Diego, USA, 3–7 Mar. 2013, pp. 808-817 (2013). doi:10.1061/9780784412787.082

  13. Murase, K., Mochida, T., Sagawa, Y., Sugama, H.: Estimation on the strength of a liquid bridge adhered to three spheres. Adv. Powder Technol. 19(4), 349–367 (2008)

    Article  Google Scholar 

  14. Murase, K., Mochida, T., Sugama, H.: Experimental and numerical studies on liquid bridge formed among three spheres. Granul. Matter 6(2–3), 111–119 (2004)

    Article  MATH  Google Scholar 

  15. Nase, S.T., Vargas, W.L., Abatan, A.A., McCarthy, J.J.: Discrete characterization tools for cohesive granular material. Powder Technol. 116(2), 214–223 (2001)

    Article  Google Scholar 

  16. Rynhart, P.R., McLachlan, R., Jones, J.R., McKibbin, R.: Solution of the Young–Laplace equation for three particles. Res. Lett. Inf. Math. Sci. 5, 119–127 (2003)

    Google Scholar 

  17. Rynhart, P., McKibbin, R., McLachlan, R., Jones, J.R.: Mathematical modelling of granulation: static and dynamic liquid bridges. Res. Lett. Inf. Math. Sci. 3, 199–212 (2002)

    Google Scholar 

  18. Sanchez-Palencia, E., Millet, O., Béchet, F.: Thin Elastic Shells. Computing and Asymptotics. Lecture Notes in Applied and Computational Mechanics. Springer, Berlin (2010)

  19. Shikhmurzaev, Y.D.: Coalescence and capillary breakup of liquid volumes. Phys. Fluids 12, 2386–2396 (2000)

  20. Simons, S.J.R., Fairbrother, R.J.: Direct observations of liquid binder–particle interactions: the role of wetting behaviour in agglomerate growth. Powder Technol. 110(1), 44–58 (2000)

    Article  Google Scholar 

  21. Sprittles, J.E., Shikhmurzaev, Y.D.: Coalescence of liquid drops: different models versus experiment. Phys. Fluids 24, 122105–122131 (2012)

    Article  ADS  MATH  Google Scholar 

  22. Wu, M., Cubaud, T., Ho, C.M.: Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids 16, L51 (2004)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge J.P. Gras for allowing to reproduce at Sect. 2 experimental data from his Ph.D. Thesis and Prof. N.-P. Kruyt for personal discussions about this paper to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Millet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagneux, G., Millet, O. An analytical framework for evaluating the cohesion effects of coalescence between capillary bridges. Granular Matter 18, 16 (2016). https://doi.org/10.1007/s10035-016-0613-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0613-5

Keywords

Navigation