Skip to main content
Log in

Macroscopic strains in granular materials accounting for grain rotations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular materials are special materials, from the continuum-mechanical viewpoint, in the sense that they possess a clear microstructure of grains and intergrain contacts. In addition, the grains have translational as well as rotational degrees of freedom. Here a micromechanical expression is formulated for the average displacement gradient tensor in terms of the grain displacements and rotations for the two-dimensional case. It is based on a tessellation of the granular assembly into closed loops, along whose boundary the displacement field is defined in terms of the grain displacements and rotations. An important consideration for this expression is that it must satisfy the surface-additivity property, according to which the average displacement gradient of a combined two-dimensional surface is determined by the average displacement gradients of the constituent surfaces (and weighted by their areas). The developed micromechanical expression is verified by comparing its results with the macroscopic deformation as determined from the displacements at the boundary. Results of DEM simulations of a biaxial test (where the average rotation is equal to zero) and a shear test (where the average rotation is not equal to zero) are employed for this verification. The developed micromechanical expression for the displacement gradient is subsequently used to study deformation patterns in a complex case of a biaxial test where a shear band is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. This definition involves not only contact forces between grains, but also inertia forces in dynamical situations (see also [20] for the associated DEM simulations).

References

  1. Aboudi, J., Arnold, S.M., Bednarcyk, B.A.: Micromechanics of Composite Materials. Elsevier, Amsterdam (2013)

    Google Scholar 

  2. Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65, 011304 (2002)

    Article  ADS  Google Scholar 

  3. Aranson, I.S., Tsimring, L.S.: Continuum theory of partially fluidized granular flows. Phys. Rev. E 64, 020301 (2001)

    Article  ADS  Google Scholar 

  4. Bagi, K.: Stress and strain in granular assemblies. Mech. Mater. 22, 165–177 (1996)

    Article  Google Scholar 

  5. Bagi, K.: Analysis of microstructural strain tensors for granular assemblies. Int. J. Solids Struct. 43, 3166–3184 (2006)

    Article  MATH  Google Scholar 

  6. Bonelli, S., Millet, O., Nicot, F., Rahmoun, J., de Saxcé, G.: On the definition of an average strain tensor for two-dimensional granular material assemblies. Int. J. Solids Struct. 49, 947–958 (2012)

    Article  Google Scholar 

  7. Cambou, B., Chaze, M., Dedecker, F.: Change of scale in granular materials. Eur. J. Mech. A Solids 19, 999–1014 (2000)

    Article  MATH  Google Scholar 

  8. Cambou, B., Jean, M.: Micromécanique des milieux granulaires. Hermes, Paris (2001)

    Google Scholar 

  9. Chang, C.S., Gao, J.: Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mech. 115, 213–229 (1996)

    Article  MATH  Google Scholar 

  10. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 9, 47–65 (1979)

    Article  Google Scholar 

  11. Dantu P.: Contribution à l’étude mécanique et géométrique des milieux pulvérulents. In: Proc. 4th Int. Conf. Soils Mech. Found. Eng., London, pp. 144–148 (1957)

  12. Dedecker, F., Chaze, M., Dubujet, Ph, Cambou, B.: Specific features of strain in granular materials. Mech. Cohes. Frict. Mater. 5, 173–193 (2000)

    Article  Google Scholar 

  13. de Saxcé, G., Fortin, J., Millet, O.: About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor. Mech. Mater. 36, 1175–1184 (2004)

    Article  Google Scholar 

  14. Durán, O., Kruyt, N.P., Luding, S.: Micro-mechanical analysis of deformation characteristics of three-dimensional granular materials. Int. J. Solids Struct. 47, 2234–2245 (2010)

    Article  MATH  Google Scholar 

  15. Durán, O., Kruyt, N.P., Luding, S.: Analysis of three-dimensional micro-mechanical strain formulations for granular materials: evaluation of accuracy. Int. J. Solids Struct. 47, 251–260 (2010)

    Article  MATH  Google Scholar 

  16. de Gennes, P.G.: Reflections on the mechanics of granular matter. Phys. A 261, 267–293 (1998)

  17. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  18. Fortin, J., Millet, O., De Saxcé, G.: Mean stress in a granular medium in dynamics. Mech. Res. Commun. 29(4), 235–240 (2002)

    Article  MATH  Google Scholar 

  19. Fortin, J., Millet, O., De Saxcé, G.: Construction of an averaged stress tensor for a granular medium. Eur. J. Mech. A Solids 22(4), 567–582 (2003)

  20. Fortin, J., Millet, O., de Saxcé, G.: Numerical simulation of granular materials by an improved discrete element method. Int. J. Numer. Methods Eng. 62, 639–663 (2005)

  21. Goldhirsch, I., Goldenberg, C.: Continuum mechanics for small systems and fine resolutions. In: Rieth, M., Schommers, W. (eds.) Handbook of Theoretical and Computational Nanotechnology, pp. 1–58. American Scientific Publishers, Stevenson Ranch (2005)

    Google Scholar 

  22. Hadda, N.: Aspects micromécaniques de la rupture dans les milieux granulaires (in French) [Micromechanical aspects of failure in granular materials]. Ph.D. Thesis Université de Grenoble, Grenoble, France (2012)

  23. Horne, M.R.: The behaviour of an assembly of rotund, rigid, cohesionless particles, I and II. Proc. R. Soc. Lond. A 286, 62–97 (1965)

    Article  ADS  Google Scholar 

  24. Kruyt, N.P., Rothenburg, L.: Micromechanical definition of the strain tensor for granular materials. J. Appl. Mech. (Transactions of the ASME) 63, 706–711 (1996)

    Article  ADS  MATH  Google Scholar 

  25. Kruyt, N.P.: Statics and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct. 40, 511–534 (2003)

    Article  MATH  Google Scholar 

  26. Kruyt, N.P., Millet, O., Nicot, F.: Deformation analysis of granular materials at micro and macro scales. In: Soga, K., Kumar, K., Biscontin, G., Kuo, M. (eds.) Geomechanics from Micro to Macro. pp. 753–757. Taylor & Francis, London, UK (2014)

  27. Kuhn, M.R.: A boundary integral for gradient averaging in two dimensions: application to polygonal regions in granular materials. Int. J. Numer. Methods Eng. 59, 559–576 (2004)

    Article  MATH  Google Scholar 

  28. Liao, C.-L., Chang, T.-P., Young, D.-H.: Stress-strain relationship for granular materials based on the hypothesis of best fit. Int. J. Solids Struct. 34, 4087–4100 (1997)

    Article  MATH  Google Scholar 

  29. Nicot, F., Darve, F.: A multi-scale approach to granular materials. Mech. Mater. 37, 980–1006 (2005)

    Google Scholar 

  30. Oda, M., Konishi, J.: Microscopic deformation mechanism of granular material in simple shear. Soils Found. 14, 15–32 (1974)

    Google Scholar 

  31. O’Sullivan, C., Bray, J.D., Li, S.F.: A new approach for calculating strain for particulate media. Int. J. Numer. Anal. Methods Geomech. 27, 859–877 (2003)

    Article  MATH  Google Scholar 

  32. Pouliquen, O., Forterre, Y., Ledizes, S.: Dense granular flows down incline as a self-activated process. Adv. Complex Syst. 4, 441–450 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Radjai, F., Wolf, D., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packing. Phys. Rev. Lett. 80, 61–64 (1998)

    Article  ADS  Google Scholar 

  34. Radjai, F., Roux, S., Moreau, J.J.: Contact forces in a granular packing. Chaos 9, 544–550 (1999)

    Article  ADS  MATH  Google Scholar 

  35. Rajchenbach, J.: Granular flows. Adv. Phys. 49, 229–256 (2000)

    Article  ADS  Google Scholar 

  36. Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57, 706–727 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81, 011302 (2010)

    Article  ADS  Google Scholar 

  38. Tordesillas, A., Pucilowski, S., Sibille, L., Nicot, F., Darve, F.: Multiscale characterization of diffuse granular failure. Philos. Mag. 92, 4547–4587 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge data shown in Sect. 6 that was kindly provided by N. Hadda (previously with Irstea, France; currently with the Department of Civil Engineering of the University of Calgary, Alberta, Canada). NK acknowledges hospitality at Université de La Rochelle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Kruyt.

Additional information

This study is an extended version of that presented by the authors [26].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruyt, N.P., Millet, O. & Nicot, F. Macroscopic strains in granular materials accounting for grain rotations. Granular Matter 16, 933–944 (2014). https://doi.org/10.1007/s10035-014-0523-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0523-3

Keywords

Navigation