Skip to main content

Advertisement

Log in

Integrating Remote Sensing with Ground-based Observations to Quantify the Effects of an Extreme Freeze Event on Black Mangroves (Avicennia germinans) at the Landscape Scale

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Climate change is altering the frequency and intensity of extreme weather events. Quantifying ecosystem responses to extreme events at the landscape scale is critical for understanding and responding to climate-driven change but is constrained by limited data availability. Here, we integrated remote sensing with ground-based observations to quantify landscape-scale vegetation damage from an extreme climatic event. We used ground- and satellite-based black mangrove (Avicennia germinans) leaf damage data from the northern Gulf of Mexico (USA and Mexico) to examine the effects of an extreme freeze in a region where black mangroves are expanding their range. The February 2021 event produced coastal temperatures as low as − 10 °C in some areas, exceeding thresholds for A. germinans damage and mortality. We used Sentinel-2 surface reflectance data to assess vegetation greenness before and after the freeze, along with ground-based observations of A. germinans leaf damage. Our results show a negative, nonlinear threshold relationship between A. germinans leaf damage and minimum temperature, with a temperature threshold for leaf damage near − 6 °C. Satellite-based analyses indicate that, at the landscape scale, damage was particularly severe along the central Texas coast, where the freeze event affected > 2000 ha of A. germinans-dominated coastal wetlands. Our analyses highlight the value of pairing remotely sensed data with regional, ground-based observations for quantifying and extrapolating the effects of extreme freeze events on mangroves and other tropical, cold-sensitive plants. The results also demonstrate how extreme freeze events govern the expansion and contraction of mangroves near northern range limits in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data from this study are available within the following U.S. Geological Survey data releases: Kaalstad and others (2023) (https://doi.org/10.5066/P97GF4NP) and Martinez and others (2023) (https://doi.org/10.5066/P9C4E2CW).

References

  • Alber M, Swenson EM, Adamowicz SC, Mendelssohn IA. 2008. Salt marsh dieback: an overview of recent events in the US. Estuarine Coastal and Shelf Science 80:1–11.

    Article  ADS  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660–684.

    Article  Google Scholar 

  • Alonso A, Muñoz-Carpena R, E. Kennedy R, Murcia C. 2016. Wetland landscape spatio-temporal degradation dynamics using the new google earth engine cloud-based platform: opportunities for non-specialists in remote sensing. Transactions of the ASABE 59:1331.

    Article  Google Scholar 

  • Bardou R, Aerni KE, Alemu JB, Armitage AR, Breithaupt JL, Cebrian J, Crimian R, Cummins K, Day RH, Devlin DJ, Doty J, Dunton KH, Enwright NM, Feher LC, Feller IC, Gabler CA, Gibbs SL, Hester MW, Hughes AR, Kang C, Lamont MM, Liu KB, Martinez M, Matheny AM, McClenachan GM, McKee KL, Mendelssohn IA, Michot TC, Miller CJ, Moon JA, Moyer RP, O’Connor R, O’Donnell K, Osland MJ, Pitchford JL, Preheim L, Quirk T, Scheffel WA, Scyphers S, Shepard C, Snyder CM, Sparks E, Swanson KM, Swinea S, Thorne K, Truskey S, Vervaeke WC, Weaver CA, Willis J, Yao Q. 2022. Mangrove distribution in the southeastern United States in 2021: U.S. Geological Survey data release. https://doi.org/10.5066/P9Y2T0K4

  • Bardou R, Osland MJ, Scyphers S, Shepard C, Aerni KE, Alemu I JB, Crimian R, Day RH, Enwright NM, Feher LC, Gibbs SL, O’Donnell K, Swinea SH, Thorne K, Truskey S, Armitage AR, Baker R, Breithaupt JL, Cavanaugh KC, Cebrian J, Cummins K, Devlin DJ, Doty J, Ellis WL, Feller IC, Gabler CA, Kang Y, Kaplan DA, Kennedy JP, Krauss KW, Lamont MM, Liu K, Martinez M, Matheny AM, McClenachan GM, McKee KL, Mendelssohn IA, Michot TC, Miller CJ, Moon JA, Moyer RP, Nelson J, O’Connor R, Pahl JW, Pitchford JL, Proffitt CE, Quirk T, Radabaugh KR, Scheffel WA, Smee DL, Snyder CM, Sparks E, Swanson KM, Vervaeke WC, Weaver CA, Willis J, Yando ES, Yao Q, Hughes AR. 2023. Rapidly changing range limits in a warming world: critical data limitations and knowledge gaps for advancing understanding of mangrove range dynamics in the southeastern USA. Estuaries and Coasts 46:1123–1140.

    Article  Google Scholar 

  • Boucek RE, Gaiser EE, Liu H, Rehage JS. 2016. A review of subtropical community resistance and resilience to extreme cold spells. Ecosphere 7:e01455.

    Article  Google Scholar 

  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences 111:723–727.

    Article  ADS  CAS  Google Scholar 

  • Cavanaugh KC, Osland MJ, Bardou R, Hinojosa-Arango G, López-Vivas JM, Parker JD, Rovai AS. 2018. Sensitivity of mangrove range limits to climate variability. Global Ecology and Biogeography 27:925–935.

    Article  Google Scholar 

  • Cavanaugh KC, Dangremond EM, Doughty CL, Williams AP, Parker JD, Hayes MA, Rodriguez W, Feller IC. 2019. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proceedings of the National Academy of Sciences 116:21602–21608.

    Article  ADS  CAS  Google Scholar 

  • Chen L, Wang W, Li QQ, Zhang Y, Yang S, Osland MJ, Huang J, Peng C. 2017. Mangrove species’ responses to winter air temperature extremes in China. Ecosphere 8:e01865.

    Article  Google Scholar 

  • Coldren GA, Proffitt CE. 2017. Mangrove seedling freeze tolerance depends on salt marsh presence, species, salinity, and age. Hydrobiologia 803:159–171.

    Article  CAS  Google Scholar 

  • Cook-Patton SC, Lehmann M, Parker JD. 2015. Convergence of three mangrove species towards freeze-tolerant phenotypes at an expanding range edge. Functional Ecology 29:1332–1340.

    Article  Google Scholar 

  • Daly C, Helmer EH, Quiñones M. 2003. Mapping the climate of Puerto Rico, Vieques and Culebra. International Journal of Climatology 23:1359–1381.

    Article  ADS  Google Scholar 

  • Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP. 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology 28:2031–2064.

    Article  ADS  Google Scholar 

  • Daly C, Widrlechner MP, Halbleib MD, Smith JI, Gibson WP. 2012. Development of a new USDA plant hardiness zone map for the United States. Journal of Applied Meteorology and Climatology 51:242–264.

    Article  ADS  Google Scholar 

  • Day RH, Twilley R, Michot T, From AS. 2020. Geographic distribution of black mangrove (Avicennia germinans) in coastal Louisiana in 2009: U.S. Geological Survey data release. https://doi.org/10.5066/P9RC8EIE

  • Devaney JL, Lehmann M, Feller IC, Parker JD. 2017. Mangrove microclimates alter seedling dynamics at the range edge. Ecology 98:2513–2520.

    Article  PubMed  Google Scholar 

  • Duke N, Ball M, Ellison J. 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology & Biogeography Letters 7:27–47.

    Article  Google Scholar 

  • Enwright NM, Soo Hoo WM, Dugas JL, Conzelmann CP, Laurenzano C, Lee DM, Mouton K, Stelly SJ. 2020. Louisiana Barrier Island Comprehensive Monitoring Program: Mapping habitats in beach, dune, and intertidal environments along the Louisiana Gulf of Mexico shoreline, 2008 and 2015–16. Reston, VA: U.S. Geological Survey Open-File Report 2020–1030, 57 p. https://doi.org/10.3133/ofr20201030

  • Feller IC, Berger U, Chapman SK, Dangremond EM, Dix NG, Langley JA, Lovelock CE, Osborne TZ, Shor AC, Simpson LT. 2023. Nitrogen addition increases freeze resistance in black mangrove (Avicennia germinans) shrubs in a temperate-tropical ecotone. Ecosystems 26:800–814. https://doi.org/10.1007/s10021-022-00796-z

    Article  CAS  Google Scholar 

  • Finkbeiner M, Simons JD, Robinson C, Wood J, Summers A, Lopez C. 2009. Atlas of shallow-water benthic habitats of coastal Texas: Espiritu Santo Bay to Lower Laguna Madre, 2004 and 2007. Charleston, SC: NOAA Coastal Services Center.

  • Frazier AE, Hemingway BL. 2021. A technical review of planet smallsat data: practical considerations for processing and using PlanetScope imagery. Remote Sensing 13:3930.

    Article  ADS  Google Scholar 

  • Frazier AE, Wang L. 2013. Modeling landscape structure response across a gradient of land cover intensity. Landscape Ecology 28:233–246.

    Article  Google Scholar 

  • Gabler CA, Osland MJ, Grace JB, Stagg CL, Day RH, Hartley SB, Enwright NM, From AS, McCoy ML, McLeod JL. 2017. Macroclimatic change expected to transform coastal wetland ecosystems this century. Nature Climate Change 7:142–147.

    Article  ADS  Google Scholar 

  • Gao B. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58:257–266.

    Article  ADS  Google Scholar 

  • Gitelson AA, Kaufman YJ, Stark R, Rundquist D. 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment 80:76–87.

    Article  ADS  Google Scholar 

  • Google Earth Engine. 2022. Google Earth Engine.

  • Hesterberg SG, Jackson K, Bell SS. 2022. Climate drives coupled regime shifts across subtropical estuarine ecosystems. Proceedings of the National Academy of Sciences 119:e2121654119.

    Article  CAS  Google Scholar 

  • Hoffman SE, Devlin DJ, Proffitt CE. 2022. Maternal nutrient history enhances black mangrove (Avicennia germinans) seedling growth after propagules experience a hard freeze. Estuaries and Coasts 45:2534–2542.

    Article  CAS  Google Scholar 

  • Hufkens K, Ceulemans R, Scheunders P. 2008. Estimating the ecotone width in patchy ecotones using a sigmoid wave approach. Ecological Informatics 3:97–104.

    Article  Google Scholar 

  • IPCC. 2021. Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B, editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp 3–32. https://doi.org/10.1017/9781009157896.001

  • Jentsch A, Kreyling J, Beierkuhnlein C. 2007. A new generation of climate-change experiments: events, not trends. Frontiers in Ecology and the Environment 5:365–374.

    Article  Google Scholar 

  • Kaalstad S, Devlin DJ, Proffitt CE, Osland MJ, Swanson KM, Kaplan DA, Day RH, Feher LC, Reever NGF, Dunton KH, Stetter AP, Fierro-Cabo A, From AS, Cebrian J, Miller CJ, Cummins KL, Armitage AR, Sanspree CR, Flores EA, Hughes R, Zamora-Tovar C, Snyder CM, Thompson JE, Anderson GH. 2023. 2021 Gulf of Mexico Mangrove Freeze Damage Data: U.S. Geological Survey data release, https://doi.org/10.5066/P97GF4NP.

  • Kennedy JP, Preziosi RF, Rowntree JK, Feller IC. 2020. Is the central-marginal hypothesis a general rule? Evidence from three distributions of an expanding mangrove species, Avicennia germinans (L.) L. Molecular Ecology 29:704–719.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy JP, Johnson GN, Preziosi RF, Rowntree JK. 2022. Genetically based adaptive trait shifts at an expanding mangrove range margin. Hydrobiologia 849:1777–1794.

    Article  Google Scholar 

  • Lagomasino D, Fatoyinbo T, Castañeda-Moya E, Cook BD, Montesano PM, Neigh CSR, Corp LA, Ott LE, Chavez S, Morton DC. 2021. Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nature Communications 12:4003.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Langston AK, Kaplan DA. 2020. Modelling the effects of climate, predation, and dispersal on the poleward range expansion of black mangrove (Avicennia germinans). Ecological Modelling 434:109245.

    Article  Google Scholar 

  • Lonard RI, Judd FW. 1991. Comparison of the effects of the severe freezes of 1983 and 1989 on native woody plants in the lower Rio Grande Valley. Texas. the Southwestern Naturalist 36:213.

    Article  Google Scholar 

  • Lovelock CE, Krauss KW, Osland MJ, Reef R, Ball MC. 2016. The physiology of mangrove trees with changing climate. In: Goldstein G, Santiago LS, editors. Tropical Tree Physiology: Adaptations and Responses in a Changing Environment. Tree Physiology. Cham: Springer International Publishing. pp 149–79.

  • Lugo AE, Patterson-Zuca C. 1977. The impact of low temperature stress on mangrove structure and growth. Tropical Ecology. 18:149–161.

    Google Scholar 

  • Macy A, Osland MJ, Cherry JA, Cebrian J. 2021. Effects of chronic and acute stressors on transplanted black mangrove (Avicennia germinans) seedlings along an eroding Louisiana shoreline. Restoration Ecology 29:e13373.

    Article  Google Scholar 

  • Madrid EN, Armitage AR, López-Portillo J. 2014. Avicennia germinans (black mangrove) vessel architecture is linked to chilling and salinity tolerance in the Gulf of Mexico. Frontiers in Plant Science 5:503.

  • Martin JH, McEachron LW. 1996. Historical annotated review of winter kills of marine organisms in Texas bays. Austin, TX: Texas Parks and Wildlife - Coastal Fisheries Division

  • Martinez M, Osland MJ, Grace JB, Enwright NM, Stagg CL, Kaalstad S, Anderson G, Armitage AR, Cebrian J, Cummins KL, Day RH, Devlin DJ, Dunton KH, Feher LC, Fierro-Cabo A, Flores EA, From AS, Hughes AR, Kaplan DA, Langston AK, Miller C, Proffitt CE, Reaver NGF, Sanspree CR, Snyder CM, Stetter AP, Swanson KM, Thompson JE, Zamora-Tovar C. 2023. Integrating remote sensing with ground-based observations to quantify the effects of an extreme freeze event on black mangroves (Avicennia germinans) at the landscape scale: U.S. Geological Survey data release, https://doi.org/10.5066/P9C4E2CW.

  • McClenachan G, Witt M, Walters LJ. 2021. Replacement of oyster reefs by mangroves: Unexpected climate-driven ecosystem shifts. Global Change Biology 27:1226–1238.

    Article  ADS  CAS  PubMed  Google Scholar 

  • McKee KL, Vervaeke WC. 2018. Will fluctuations in salt marsh–mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise? Global Change Biology 24:1224–1238.

    Article  ADS  PubMed  Google Scholar 

  • Narron CR, O’Connell JL, Mishra DR, Cotten DL, Hawman PA, Mao L. 2022. Flooding in Landsat across tidal systems (FLATS): An index for intermittent tidal filtering and frequency detection in salt marsh environments. Ecological Indicators 141:109045.

    Article  Google Scholar 

  • NOAA. 2022. Global historical climatology network daily. Climate Data Online - National Climatic Data Center.

  • Office for Coastal Management. 2022. C-CAP Derived 10 meter Land Cover—BETA from 2010–06–15 to 2010–08–15.

  • Osland MJ, Day RH, Larriviere JC, From AS. 2014. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PLOS ONE 9:e99604.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Osland MJ, Day RH, Hall CT, Brumfield MD, Dugas JL, Jones WR. 2017. Mangrove expansion and contraction at a poleward range limit: climate extremes and land-ocean temperature gradients. Ecology 98:125–137.

    Article  PubMed  Google Scholar 

  • Osland MJ, Hartmann AM, Day RH, Ross MS, Hall CT, Feher LC, Vervaeke WC. 2019. Microclimate influences mangrove freeze damage: implications for range expansion in response to changing macroclimate. Estuaries and Coasts 42:1084–1096.

    Article  Google Scholar 

  • Osland MJ, Day RH, Hall CT, Feher LC, Armitage AR, Cebrian J, Dunton KH, Hughes AR, Kaplan DA, Langston AK, Macy A, Weaver CA, Anderson GH, Cummins K, Feller IC, Snyder CM. 2020. Temperature thresholds for black mangrove (Avicennia germinans) freeze damage, mortality and recovery in North America: Refining tipping points for range expansion in a warming climate. Journal of Ecology 108:654–665.

    Article  Google Scholar 

  • Osland MJ, Stevens PW, Lamont MM, Brusca RC, Hart KM, Waddle JH, Langtimm CA, Williams CM, Keim BD, Terando AJ, Reyier EA, Marshall KE, Loik ME, Boucek RE, Lewis AB, Seminoff JA. 2021. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Change Biology 27:3009–3034.

    Article  PubMed  Google Scholar 

  • Osland MJ, Day RH, From AS, McCoy ML, McLeod JL, Kelleway JJ. 2015. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes. Ecosphere 6:art160.

  • Osland MJ, Hughes AR, Armitage AR, Scyphers SB, Cebrian J, Swinea SH, Shepard CC, Allen MS, Feher LC, Nelson JA, O’Brien CL, Sanspree CR, Smee DL, Snyder CM, Stetter AP, Stevens PW, Swanson KM, Williams LH, Brush JM, Marchionno J, Bardou R. 2022. The impacts of mangrove range expansion on wetland ecosystem services in the southeastern United States: Current understanding, knowledge gaps, and emerging research needs. Global Change Biology 28:3163–3187.

  • Pennings SC, Bertness MD. 2001. Salt marsh communities. In: Marine Community Ecology. In M.D. Bertness, S.D. Gaines, M. Hay. Sunderland, Massachusetts. pp 289–316.

  • Pickens CN, Hester MW. 2011. Temperature tolerance of early life history stages of black mangrove Avicennia germinans: implications for range expansion. Estuaries and Coasts 34:824–830.

    Article  Google Scholar 

  • Purtlebaugh CH, Martin CW, Allen MS. 2020. Poleward expansion of common snook Centropomus undecimalis in the northeastern Gulf of Mexico and future research needs. PLOS ONE 15:e0234083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team. 2022. R: A language and environment for statistical computing.

  • Ritz C, Strebig JC. 2016. Analysis of Dose-Response Curves.

  • Ross MS, Ruiz PL, Sah JP, Hanan EJ. 2009. Chilling damage in a changing climate in coastal landscapes of the subtropical zone: a case study from south Florida. Global Change Biology 15:1817–1832.

    Article  ADS  Google Scholar 

  • Rouse JW, Hass RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the Great Plains with ERTS. 3rd Earth Resource Technology Satellite (ERTS) 1:48–62.

  • Sherrod CL, McMillan C. 1981. Black mangrove, Avicennia germinans, in Texas: past and present distribution. Contributions in Marine Science 24:115–131.

    Google Scholar 

  • Sherrod CL, McMillan C. 1985. The distributional history and ecology of mangrove vegetation along the northern Gulf of Mexico coastal region. Contributions in Marine Science 28:129–140.

    Google Scholar 

  • Shreve F. 1914. The role of winter temperatures in determining the distribution of plants. American Journal of Botany 1:194–202.

    Article  Google Scholar 

  • Sippo JZ, Lovelock CE, Santos IR, Sanders CJ, Maher DT. 2018. Mangrove mortality in a changing climate: An overview. Estuarine, Coastal and Shelf Science 215:241–249.

    Article  ADS  Google Scholar 

  • Smith MD. 2011. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology 99:656–663.

    Article  Google Scholar 

  • Snyder CM, Feher LC, Osland MJ, Miller CJ, Hughes AR, Cummins KL. 2022. The distribution and structure of mangroves (Avicennia germinans and Rhizophora mangle) near a rapidly changing range limit in the northeastern Gulf of Mexico. Estuaries and Coasts 45:181–195.

    Article  Google Scholar 

  • Stevens PW, Fox SL, Montague CL. 2006. The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetlands Ecology and Management 14:435–444.

    Article  Google Scholar 

  • Tahsin S, Medeiros SC, Singh A. 2018. Assessing the resilience of coastal wetlands to extreme hydrologic events using vegetation indices: a review. Remote Sensing 10:1390.

    Article  ADS  Google Scholar 

  • Timoney KP, La Roi GH, Dale MRT. 1993. Subarctic forest-tundra vegetation gradients: the sigmoid wave hypothesis. Journal of Vegetation Science 4:387–394.

    Article  Google Scholar 

  • Tomlinson PB. 2016. The botany of mangroves, 2nd edn. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • USGCRP. 2017. Climate Science Special Report: Fourth National Climate Assessment, Volume I. U.S. Global Change Research Program, Washington, DC

  • USGCRP. 2018. Fourth National Climate Assessment: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II. U.S. Global Change Research Program, Washington, DC

  • Walters LJ, McClenachan G. 2021. Commentary on Osland et al.: Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Change Biology 27:3006–3008.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Jia M, Yin D, Tian J. 2019. A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment 231:111223.

    Article  Google Scholar 

  • Weaver CA, Armitage AR. 2018. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment. PLOS ONE 13:e0193617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson JB, Agnew ADQ. 1992. Positive-feedback switches in plant communities. In: Advances in Ecological Research. Vol. 23. Academic Press. pp 263–336.

  • Woodroffe CD, Grindrod J. 1991. Mangrove biogeography: the role of quaternary environmental and sea-level change. Journal of Biogeography 18:479–492.

    Article  Google Scholar 

  • Yando ES, Osland MJ, Willis JM, Day RH, Krauss KW, Hester MW. 2016. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. Journal of Ecology 104:1020–1031.

    Article  CAS  Google Scholar 

  • Zhang K, Thapa B, Ross M, Gann D. 2016. Remote sensing of seasonal changes and disturbances in mangrove forest: a case study from South Florida. Ecosphere 7:e01366.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kristin Byrd for helpful comments on an earlier version of the manuscript. MM was supported by a USGS Mendenhall Postdoctoral Research Fellowship funded by the USGS Ecosystems Mission Area and the USGS Wetland and Aquatic Research Center. This research was also partially supported by the USGS Climate Research and Development and the USGS Greater Everglades Priority Ecosystem Science programs. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda Martinez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1557 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, M., Osland, M.J., Grace, J.B. et al. Integrating Remote Sensing with Ground-based Observations to Quantify the Effects of an Extreme Freeze Event on Black Mangroves (Avicennia germinans) at the Landscape Scale. Ecosystems 27, 45–60 (2024). https://doi.org/10.1007/s10021-023-00871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00871-z

Keywords

Navigation