Skip to main content

Advertisement

Log in

Nitrogen Addition Increases Freeze Resistance in Black Mangrove (Avicennia germinans) Shrubs in a Temperate-Tropical Ecotone

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Low temperature stress is the primary factor determining the latitudinal limits of tropical plants. As the climate warms, tropical species are migrating poleward, displacing native species and modifying ecosystem structure and function. Changes are particularly evident along latitudinal gradients with the highest velocity of change occurring in wetlands. In coastal wetlands, saltmarshes dominate at latitudes above 30°, whereas mangroves occur mostly in the tropics because most species are intolerant of freezing temperatures, but others, like Avicennia germinans (black mangrove), do tolerate freezing temperatures. In response to a warmer climate and fewer killing freezes, mangroves are currently expanding into saltmarshes. However, the speed of the transition from saltmarsh to mangrove can also be modified by extreme events and nutrient subsidies. In a fertilization experiment along the Atlantic coast of North America, we found that nitrogen addition altered plant traits in Avicennia, which increased their resistance to freezing temperatures. This trait shift resulted in negligible freeze effects during a January 2018 extreme freeze event compared to unfertilized plants, which lost more than 80% of the leaves and more than 40% of the wood in their canopies. The freeze-killed litter from unfertilized plants provided a nutrient pulse that influenced recovery, growth and mangrove cover for three years following the freeze. Nutrient enrichment and recovery from the freeze effects led to increased growth and structural complexity of the mangrove canopy, which further enhanced freeze tolerance, shrub growth form and the ability of Avicennia to displace the saltmarsh in the temperate–tropical ecotone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

All data available at Smithsonian Figshare https://doi.org/10.25573/serc.21206261.v1.

References

  • Attaway JA 1997. A history of Florida citrus freezes. Florida Science Source, Lake Alfred, FL.

  • Bellingham PJ, Sparrow AD. 2009. Multi-stemmed trees in montane rain forests: their frequency and demography in relation to elevation, soil nutrients and disturbance. Journal of Ecology 97:72–483.

    Article  Google Scholar 

  • Bidlingmayer WL, McCoy ED. 1978. An inventory of the saltmarsh mosquito control impoundments in Florida. Unpublished report from the Florida Medical Entomology Laboratory, Post Office Box 520, Vero Beach, Florida 32960.

  • Booth TD, Cook SE, Berryman RD. 2006. Point sampling digital imagery with SamplePoint. Environmental Monitoring and Assessment 123:97–108.

    Article  PubMed  Google Scholar 

  • Cantrell SA, Molina M, Lodge DJ, Rivera-Figueroa FJ, Ortiz-Hernández MAA, Cyterski MJ, and others 2014. Effects of a simulated hurricane disturbance on forest floor microbial communities. Forest Ecology and Management 332:22–31.

    Article  Google Scholar 

  • Cavanaugh KC, Parker JD, Cook-Patton S, Feller IC, Williams A, Kellner JR. 2015. Integrating physiological threshold experiments with climate modeling to project mangrove species’ range expansion. Global Change Biology 21:1928–1938.

    Article  PubMed  Google Scholar 

  • Cavanaugh KC, Dangremond EM, Doughty CL, Williams AP, Parker JD, Hayes M, Rodriguez W, Feller IC. 2019. 230 years of climate driven regime shifts in a mangrove-saltmarsh ecotone. Proceedings of the National Academy of Science 116:21602–21608.

    Article  CAS  Google Scholar 

  • Chapman SK, Feller IC, Canas G, Hayes MA, Dix N, Hester M, Morris J, Langley JA. 2021. Mangrove growth responses to warming differ across a latitudinal gradient. Ecology 102:e03320.

    PubMed  Google Scholar 

  • Charrier G, Ngao J, Saudreau M, Améglio T. 2015. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. Frontiers in Plant Science 6:1–18.

    Article  Google Scholar 

  • Chen THH, Murata N. 2011. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science 13:499–505.

    Article  Google Scholar 

  • Chen L, Wang W, Li QQ, Zhang Y, Yang S, Osland MJ, Huang J, Peng C. 2017. Mangrove species’ responses to winter air temperature extremes in China. Ecosphere 8:e01865.

    Article  Google Scholar 

  • Chuang A, Peterson CR. 2016. Expanding population edges: theories, traits, and trade-offs. Global Change Biology 22:494–512.

    Article  PubMed  Google Scholar 

  • Cintrón G, Schaeffer Novelli Y. 1984. Methods for studying mangrove structure. Snedaker SC, Snedaker JG, editors. The mangrove ecosystem: research methods. UNESCO. p91–113.

  • Coldren GA, Proffitt CE. 2017. Mangrove seedling freeze tolerance depends on salt marsh presence, species, salinity, and age. Hydrobiologia 803:159–171.

    Article  CAS  Google Scholar 

  • Cook-Patton SC, Lehmann M, Parker JD. 2015. Convergence of three mangrove species towards freeze-tolerant phenotypes at an expanding range edge. Functional Ecology 29:1332–1340.

    Article  Google Scholar 

  • D’Odorico P, Okin GS, Bestellmeyer BT. 2012. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5:520–530.

    Article  Google Scholar 

  • D’Odorico P, He Y, Collins S, De Wekker SFJ, Engel V, Fuentes JD. 2013. Vegetation-microclimate feedbacks in woodland-grassland ecotones. Global Ecology and Biogeography 22:364–379.

    Article  Google Scholar 

  • Dangremond EM, Simpson LT, Osborne TZ, Feller IC. 2020. Nitrogen enrichment accelerates mangrove range expansion in the temperate-tropical ecotone. Ecosystems 23:703–714.

    Article  CAS  Google Scholar 

  • Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wolheim WM. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490:388–394.

    Article  CAS  PubMed  Google Scholar 

  • Devaney J, Parker JD, Feller IC. 2017. Mangrove microclimates alter seedling dynamics at the range edge. Ecology 98:2513–2520.

    Article  PubMed  Google Scholar 

  • Doughty CL, Langley JA, Walker WS, Feller IC, Schaub R, Chapman SK. 2016. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts 39:385–396.

    Article  CAS  Google Scholar 

  • Duarte CM, Thampanya U, Terrados J, Geertz-Hansen O, Fortes MD. 1999. The determination of the age and growth of SE Asian mangrove seedlings from internodal counts. Mangroves and Salt Marshes 3:251–257.

    Article  Google Scholar 

  • Ellis WL, Boyles JW, Erickson AA, Stafford N, Bell SS, Thomas M. 2006. Alteration of the chemical composition of mangrove (Laguncularia racemosa) leaf litter fall by freeze damage. Estuarine, Coastal and Shelf Science 68:363–371.

    Article  CAS  Google Scholar 

  • Feller IC. 1995. Effects of nutrient enrichment on growth and herbivory in dwarf red mangrove (Rhizophora mangle). Ecological Monographs 65:477–505.

    Article  Google Scholar 

  • Feller IC, Lovelock CE, Berger U, McKee KL, Joye SB, Ball MC. 2010. The biocomplexity of mangrove ecosystems. Annual Review of Marine Science 2:395–416.

    Article  CAS  PubMed  Google Scholar 

  • Feller IC, Dangremond EM, Devlin DL, Lovelock CE, Proffitt E, Rodriguez W. 2015. Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida. Ecology 96:2960–2972.

    Article  PubMed  Google Scholar 

  • Goldberg NA, Heine JN. 2021. Growth and survivorship of red mangrove seedlings under a mangrove canopy and in a saltmarsh community in northeastern Florida. Flora 278:151804.

    Article  Google Scholar 

  • Gratani L, Bombelli A, Covone F. 2003. Variation in shrub structure and species co-occurrence in the Mediterranean maquis. Journal of Mediterranean Ecology 4:31–37.

    Google Scholar 

  • Guo H, Weaver C, Charles S, Whitt A, Dastidar S, D’Odorico P, Fuentes JD, Kominoski JS, Armitage AR, Pennings SC. 2017. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover. Ecology 98:762–772.

    Article  PubMed  Google Scholar 

  • Hayes MA, Jesse A, Tabet B, Reef R, Keuskamp JA, Lovelock CE. 2017. The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands. Plant and Soil 416:193–204.

    Article  CAS  Google Scholar 

  • Hayes MA, Shor AC, Jesse A, Miller C, Kennedy JP, Feller IC. 2019. The role of glycine betaine in range expansions; protecting mangroves against extreme freeze events. Journal of Ecology 108:61–69.

    Article  Google Scholar 

  • He Y, D’Odorico P, De Wekker SFJ. 2015. The role of vegetation - microclimate feedback in promoting shrub encroachment in the northern Chihuahuan desert. Global Change Biology 21:2141–2154.

    Article  PubMed  Google Scholar 

  • Heredia-Guerrero N, Oliet JA, Villar-Salvador P, Benito LF, Peñuelas JL. 2014. Fertilization regime interacts with fall temperature in the nursery to determine the frost and drought tolerance of the Mediterranean oak Quercus ilex subsp. ballota. Forest Ecology and Management 331:50–59.

    Article  Google Scholar 

  • Huang H, Anderegg LDL, Dawson TE, Mote S, D’Odorico P. 2020. Critical transition to woody plant dominance through microclimate feedbacks in North American coastal ecosystems. Ecology 101:e03107.

    Article  PubMed  Google Scholar 

  • Kangas PC, Lugo AE. 1990. The distribution of mangroves and saltmarsh in Florida. Tropical Ecology 31:32–39.

    Google Scholar 

  • Kelleway JJ, Cavanaugh K, Rogers K, Feller IC, Ens E, Doughty C, Saintilan N. 2017. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology 2017:1–18.

    Google Scholar 

  • Kennedy JP, Dangremond EM, Hayes MA, Preziosi RF, Rowntree JK, Feller IC. 2020. Hurricanes overcome migration lag and shape intraspecific genetic variation beyond a poleward mangrove range limit. Molecular Ecology. https://doi.org/10.1111/mec.15513.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy JP, Sammy JM, Rowntree JK, Preziosi PF. 2021. Mating system variation in neotropical black mangrove, Avicennia germinans, at three spatial scales towards an expanding northern distributional limit. Estuarine, Coastal and Shelf Science 248:106754.

    Article  Google Scholar 

  • Ladwig LM, Collins SL, Krofcheck DJ, Pockman WT. 2019. Minimal mortality and rapid recovery of the dominant shrub Larrea tridentata following an extreme cold event in the northern Chihuahuan Desert. Journal of Vegetation Science 30:963–972. https://doi.org/10.1111/jvs.12777.

    Article  Google Scholar 

  • Lenoir J, Svenning. 2014. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 37:001–014.

    Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CD, Ackerly DD. 2009. The velocity of climate change. Nature 462(7276):1052–1056.

    Article  CAS  PubMed  Google Scholar 

  • Lonard RI, Judd FW. 1991. Comparison of the effects of the severe freezes of 1983 and 1989 on native woody plants in the Lower Rio Grande Valley, Texas. The Southwestern Naturalist 36:213–217.

    Article  Google Scholar 

  • Lovelock CE, Ball MC, Martin K, Feller IC. 2009. Nutrient enrichment increases mortality of mangroves. PLoS One 4(5):e5600.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovelock CE, Feller IC, Reef R, Ruess RW. 2014. Variable effects of nutrient enrichment on soil respiration in mangrove forests. Plant and Soil. https://doi.org/10.1007/s11104-014-2036-6.

    Article  Google Scholar 

  • Lugo AE, Patterson-Zucca C. 1977. The impact of low temperature stress on mangrove structure and growth. Tropical Ecology 18:149–161.

    Google Scholar 

  • Lugo AE, Brown SL, Dodson R, Smith TS, Shugart HH. 1999. The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. Journal of Biogeography 26:1025–1038.

    Article  Google Scholar 

  • Malone TC, Newton A. 2020. The globalization of cultural eutrophication in the coastal ocean: causes and consequences. Frontiers in Marine Science 7:670.

    Article  Google Scholar 

  • McKee KL, Cahoon D, Feller IC. 2007. Caribbean mangroves adjust to rising sea-level through biotic controls on soil elevation change. Global Ecology and Biogeography 16:546–556.

    Article  Google Scholar 

  • Mo Y, Kearney KS, Turner RT. 2020. The resilience of coastal marshes to hurricanes: the potential impact of excess nutrients. Environment International 138:105409.

    Article  CAS  PubMed  Google Scholar 

  • Morris JT, Shaffer GP, Nyman JA. 2013. Brinson Review: Perspectives on the influence of nutrients on the sustainability of coastal wetlands. Wetlands 33:975–988.

    Article  Google Scholar 

  • Niinemets Ü. 2016. Does the touch of cold make evergreen leaves tougher? Tree Physiology 36:267–272.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ordoñez JC, van Bodegom PM, Witte J-PM, Wright IJ, Reich PB, Aerts R. 2009. A global study of relationships between leaf traits, climate, and soil measures of nutrient fertility. Global Ecology and Biogeography 18:137–149.

    Article  Google Scholar 

  • Osland MJ, Day RH, From AS, McCoy ML, McLeod JL, Kelleway JJ. 2015. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes. Ecosphere 6:1–15.

    Article  Google Scholar 

  • Osland MJ, Hartmann AM, Day RH, Ross RS, Hall CT, Feher LC, Vervaeke WC. 2019. Microclimate influences mangrove freeze damage: implications for range expansion in response to changing macroclimate. Estuaries and Coasts 42:1084–1096.

    Article  Google Scholar 

  • Osland MJ, Day RH, Hall CT, Feher LC, Armitage AR, Cebrian J, Dunton KH, Hughes AR, Daplan DA, Langston AK, Macy A, Weaver CA, Anderson GH, Cummins K, Feller IC, Snyder CM. 2020. Temperature thresholds for black mangrove (Avicennia germinans) freeze damage, mortality and recovery in North America: Refining tipping points for range expansion in a warming climate. Journal of Ecology 108:654–665.

    Article  Google Scholar 

  • Osland MJ, Stevens PW, Lamont MM, Brusca RC, Hart KM, Waddle JH, Langtimm CA, Williams CM, Keim BD, Terando AJ, Reyier EA, Marshall KE, Loik ME, Boucek RE, Lewis AB, and others 2021. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Change Biology 27:3009–3034. https://doi.org/10.1111/gcb.15563.

    Article  PubMed  Google Scholar 

  • Perry CL, Mendelssohn IA. 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29:396–406.

    Article  Google Scholar 

  • Pickens CN, Hester MW. 2011. Temperature tolerance of early life history stages of black mangrove Avicennia germinans: Implications for range expansion. Estuaries and Coasts 34:824–830.

    Article  Google Scholar 

  • Pickens CN, Sloey TM, Hester MW. 2019. Influence of salt marsh canopy on black mangrove (Avicennia germinans) survival and establishment at its northern latitudinal limit. Hydrobiologia 826:95–208.

    Article  Google Scholar 

  • Puértolas J, Gil L, Pardos JA. 2005. Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis Mill.) seedlings assessed by chlorophyll fluorescence. Forestry 78:501–511.

    Article  Google Scholar 

  • Reef R, Ball MC, Feller IC, Lovelock CE. 2010. Relationships among RNA:DNA ratio, growth and elemental stoichiometry in mangrove trees. Functional Ecology Doi/. https://doi.org/10.1111/j.1365-2435.2010.01722.x.

    Article  Google Scholar 

  • Rodríguez W, Feller IC, Cavanaugh KC. 2016. Spatio-temporal changes of a mangrove-saltmarsh ecotone in the northeastern coast of Florida, USA. Global Ecology and Conservation 7:245–261.

    Article  Google Scholar 

  • Rogers JC, Rohli RV. 1991. Florida citrus freezes and polar anticyclones in the Great Plains. Journal of Climate 4:1103–1113.

    Article  Google Scholar 

  • Ross MS, Ruiz PL, Sah JP, Hanan EJ. 2009. Chilling damage in a changing climate in coastal landscapes of the subtropical zone: a case study from south Florida. Global Change Biology 15:1817–1832.

    Article  Google Scholar 

  • Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW. 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20(147):157.

    Google Scholar 

  • Song W, Feng J, Krauss KW, Zhao Y, Wang Z, Lin G. 2020. Non-freezing cold event stresses can cause significant damage to mangrove seedlings: assessing the role of warming and nitrogen enrichment in a mesocosm study. Environmental Research Communications 2(3):031003.

    Article  Google Scholar 

  • Stevens PW, Fox SL, Montague CL. 2016. The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetland Ecology and Management 14:435–444.

    Article  Google Scholar 

  • Stuart SA, Choat B, Martin KC, Holbrook NM, Ball MC. 2007. The role of freezing in setting the latitudinal limits of mangrove forests. New Phytologist 173:576–583.

    Article  CAS  PubMed  Google Scholar 

  • Taulavuori K, Taulavuori E, Niinimaa A, Laine K. 2001. Acceleration of frost hardening in Vaccinium vitis-idaea by nitrogen fertilization. Oecologia 127:321–323.

    Article  PubMed  Google Scholar 

  • Thompson JA, Zinnert JC, Young DR. 2017. Immediate effects of microclimate modification enhance native shrub encroachment. Ecosphere 8:e01687.

    Article  Google Scholar 

  • Thorne MS, Skinner QD, Smith MA, Rodgers JD, Laycock WA, Cerekci SA. 2002. Evaluation of a technique for measuring canopy volume of shrubs. Rangeland Ecology & Management/journal of Range Management Archives 55:235–241.

    Article  Google Scholar 

  • Turner RE, Howes BL, Teal JM, Milan CS, Swenson EM, Tonerb DDG. 2009. Salt marshes and eutrophication: An unsustainable outcome. Limnology and Oceanography 54:1634–1642.

    Article  CAS  Google Scholar 

  • Valiela I, Kinney E, Culbertson J, Peacock E, Smith S. 2009. Global losses of mangroves and salt marshes. Duarte CM, editor. Global loss of coastal habitats: rates, causes and consequences. Fundación BBVA, Bilbao, Spain. p107–138

  • Walther G-R, Berger S, Sykes MT. 2005. An ecological ‘footprint’ of climate change. Proceedings of the Royal Society B 272:1427–1432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver CA, Armitage AR. 2018. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment. PloS One 13:e0193617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang LH, Bastow JL, Spence KO, Wright AN. 2008. What can we learn from resource pulses? Ecology 89:621–634.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding provided by NSF (Macrosystems Biology 1065821, DEB 1655659, Postdoctoral Fellowship in Biology 1308565) and NASA (Climate and Biological Response Program NNX11AO94G). The Guana Tolomato Matanzas NERR provided research permits; the GTMNERR staff aided with field logistics and project support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilka C. Feller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feller, I.C., Berger, U., Chapman, S.K. et al. Nitrogen Addition Increases Freeze Resistance in Black Mangrove (Avicennia germinans) Shrubs in a Temperate-Tropical Ecotone. Ecosystems 26, 800–814 (2023). https://doi.org/10.1007/s10021-022-00796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00796-z

Keywords

Navigation