Skip to main content

Advertisement

Log in

Water and Carbon Fluxes Along an Elevational Gradient in a Sagebrush Ecosystem

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Differences in water and carbon fluxes along a climate/elevation gradient within a sagebrush ecosystem are quantified, and inferences are made about climate warming using a network of eddy covariance systems. Sites are located within the Reynolds Creek Critical Zone Observatory in southwestern Idaho, USA, with elevations ranging from 1425 to 2111 m, annual precipitation ranging from 290 to 795 mm and annual temperature ranging from 9.1 to 5.4 °C. Annual gross ecosystem production (GEP) for the sites averaged (± uncertainty) 385 ± 6, 549 ± 19, 684 ± 25, and 818 ± 26 gC m−2 from lowest to highest elevation. Annual net ecosystem production indicated that the sites are carbon sinks with annual uptake typically ranging from 100 ± 10 to 200 ± 30 gC m−2. Exceptions to this are: the lowest elevation site which was carbon neutral (1 ± 16 gC m−2) during a year with a summer rainfall respiration pulse, and the highest elevation site, where carbon uptake dropped to 42 ± 20 gC m−2 during a heavy snow year. Carbon flux and evapotranspiration (ET) peaked about a month earlier at the lower elevation sites, but with limited precipitation, these sites encountered water stress for much of the growing season. Model simulations suggest that climate warming will likely have a negligible impact on annual ET and GEP at lower elevations, but rather shift ET and GEP earlier in the season and prolong the period of water stress. ET and GEP may increase with climate warming at higher elevations where precipitation is above a threshold of about 450 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data Availability

Data used in the paper can be downloaded from the AmeriFlux web site (https://ameriflux.lbl.gov/) at the following locations: http://dx.doi.org/10.17190/AMF/1375201; http://dx.doi.org/10.17190/AMF/1418682; http://dx.doi.org/10.17190/AMF/1375202.

References

  • Angell RF, Svejcar T, Bates J, Saliendra NZ, Johnson DA. 2001. Bowen ratio and closed chamber carbon dioxide flux measurements over sagebrush steppe vegetation. Agricultural & Forest Meteorology 108:153–61. https://doi.org/10.1016/S0168-1923(01)00227-1.

    Article  Google Scholar 

  • Anderson-Teixeira KJ, Delong JP, Fox AM, Brese DA, Litvak ME. 2011. Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Global Change Biology 17(1):410–24. https://doi.org/10.1111/j.1365-2486.2010.02269.x.

    Article  Google Scholar 

  • Barbour MG, Billings WD. 2000. North American terrestrial vegetation. 2nd edn. Cambridge Massachusetts: Cambridge University Press. p 616.

    Google Scholar 

  • Biederman JA, Scott RL, Goulden ML, Vargas R, Litvak ME, Kolb TE, Yepez EA, Oechel WC, Blanken PD, Bell TW, Garatuza-Payan J, Maurer GE, Dore S, Burns SP. 2016. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Global Change Biology 22:1867–79. https://doi.org/10.1111/gcb.13222.

    Article  PubMed  Google Scholar 

  • Bradley BA, Oppenheimer M, Wilcove DS. 2009. Climate change and plant invasions: restoration opportunities ahead? Global Change Biology 15:1511–21. https://doi.org/10.1111/j.1365-2486.2008.01824.x.

    Article  Google Scholar 

  • Bowling DR, Bethers-Marchetti S, Lunch CK, Grote EE, Belnap J. 2010. Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought. Journal of Geophysical Research 115:G04026. https://doi.org/10.1029/2010JG001322.

    Article  CAS  Google Scholar 

  • Call CA, Roundy BA. 1991. Perspectives and processes in revegetation of arid and semiarid rangelands. Journal of Range Management 44:543–9.

    Article  Google Scholar 

  • Chambers JC, Bradley BA, Brown CS, D’Antonio C, Germino MJ, Grace JB, Hardegree SP, Miller RF, Pyke DA. 2014. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in cold desert shrublands of western North America. Ecosystems 17:360–75.

    Article  CAS  Google Scholar 

  • Chambers JC, Devoe N, Evenden A. 2008. Collaborative management and research in the Great Basin—examining the issues and developing a framework for action. Gen. Tech. Rep. RMRS-GTR-204. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO. 66 pp. http://www.fs.fed.us/rm/pubs/rmrs_gtr204.pdf.

  • Chambers JC, Roundy BA, Blank RR, Meyer SE, Whittaker A. 2007. What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum? Ecological Monographs 77:117–45.

    Article  Google Scholar 

  • Chauvin G, Flerchinger GN, Link T, Marks D, Winstral AH, Seyfried MS. 2011. Long-term water balance and conceptual model of a semi-arid mountainous catchment. Journal of Hydrology 400:133–43.

    Article  Google Scholar 

  • Clark PE, Seyfried MS. 2001. Point sampling for leaf area index in sagebrush-steppe communities. Journal of Range Management 54:589–94.

    Article  Google Scholar 

  • Clark PE, Seyfried MS, Harris B. 2001. Intermountain plant community classification using Landsat TM and SPOT HRV Data. Journal of Range Management 54:152–60.

    Article  Google Scholar 

  • Cleary MB, Naithani KJ, Ewers BE, Pendall E. 2015. Upscaling CO2 fluxes using leaf, soil and chamber measurements across successional growth stages in a sagebrush steppe ecosystem. Journal of Arid Environments. 121:43–51.

    Article  Google Scholar 

  • Comstock JP, Ehleringer JR. 1992. Plant Adaptions in the Great Basin and Colorado Plateau. Great Basin Naturalist 52:195–215.

    Google Scholar 

  • Concilio AL, Loik ME, Belnap J. 2013. Global change effects on Bromus tectorum L. (Poaceae) at its high-elevation range margin. Global Change Biology 19:161–72. https://doi.org/10.1111/gcb.12032.

    Article  PubMed  Google Scholar 

  • Fang H, Cheng S, Wang Y, Yu G, Xu M, Dang X, Li L, Wang L. 2014. Changes in soil heterotrophic respiration, carbon availability, and microbial function in seven forests along a climate gradient. Ecological Research 29:1077–86. https://doi.org/10.1007/s11284-014-1194-6.

    Article  CAS  Google Scholar 

  • Fellows AW, Flerchinger GN, Lohse KA, Seyfried MS. 2018. Rapid recovery of gross production and respiration in a mesic mountain big sagebrush ecosystem following prescribed fire. Ecosystems 21(7):1283–94. https://doi.org/10.1007/s10021-017-0218-9.

    Article  Google Scholar 

  • Fellows AW, Flerchinger GN, Seyfried MS. 2019. Controls on gross production in an aspen-sagebrush vegetation mosaic. Ecohydrology 2019(12):e2046. https://doi.org/10.1002/eco.2046.

    Article  Google Scholar 

  • Flerchinger GN, Hanson CL, Wight JR. 1996. Modeling evapotranspiration and surface energy budgets across a watershed. Water Resources Research 32(8):2539–48.

    Article  Google Scholar 

  • Flerchinger GN, Marks D, Reba ML, Yu Q, Seyfried MS. 2010. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment. Hydrology and Earth System Sciences 14:965–78.

    Article  Google Scholar 

  • Flerchinger GN, Reba ML, Marks D. 2012. Measurement of surface energy fluxes from two rangeland sites and comparison with a multilayer canopy model. Journal of Hydrometeorology 13(3):1038–51.

    Article  Google Scholar 

  • Flerchinger GN, Seyfried MS. 2014. Comparison of methods for estimating evapotranspiration in a small rangeland catchment. Vadose Zone Journal. https://doi.org/10.2136/vzj2013.08.0152.

    Article  Google Scholar 

  • Flerchinger GN, Reba ML, Link TE, Marks D. 2015. Modeling Temperature and Humidity Profiles within Forest Canopies. Agricultural and Forest Meteorology 213:251–62.

    Article  Google Scholar 

  • Flerchinger GN, Seyfried MS, Hardegree SP. 2016. Hydrologic response and recovery to prescribed fire and vegetation removal in a small rangeland catchment. Ecohydrology 9:1604–19. https://doi.org/10.1002/eco.1751.

    Article  Google Scholar 

  • Goulden ML, Anderson RG, Bales RC, Kelly AE, Meadows M, Winston GC. 2012. Evapotranspiration along an elevation gradient in California’s Sierra Nevada. Journal of Geophysical Research 117:G03028. https://doi.org/10.1029/2012JG002027.

    Article  CAS  Google Scholar 

  • Gilmanov TG, Johnson DA, Saliendra NZ. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: bowen ratio/energy balance measurements and modeling. Basic Applied Ecology 4:167–83. https://doi.org/10.1078/1439-1791-00144.

    Article  Google Scholar 

  • Gilmanov TG, Svejcar TJ, Johnson DA, Angell RF, Saliendra NZ, Wylie BK. 2006. Long-term dynamics of production, respiration, and net CO2 exchange in two sagebrush-steppe ecosystems. Rangeland Ecology and Management 59:585–99. https://doi.org/10.2111/05-198R1.1.

    Article  Google Scholar 

  • Hanson CL, Pierson FB, Johnson GL. 2004. Dual-gauge system for measuring precipitation: Historical development and use. Journal of Hydrologic Engineering 9:350–9.

    Article  Google Scholar 

  • Harris GA, Wilson AM. 1970. Competition for moisture among seedlings of annual and perennial grasses as influenced by root elongation at low temperature. Ecology 51:530–4.

    Article  Google Scholar 

  • Hibbert AR. 1983. Water yield improvement potential by vegetation management on western rangelands. Water Resources Bulletin 19(3):375–81.

    Article  Google Scholar 

  • Huxman TE, Smith MD, Fay PA and others. 2004. Convergence across biomes to a common rain-use efficiency. Nature 429:651–4.

    Article  CAS  Google Scholar 

  • Jenny H. 1941. Factors of soil formation: A system of quantitative pedology. New York: McGraw-Hill. p 191.

    Google Scholar 

  • Jin Y, Goulden ML. 2014. Ecological consequences of variation in precipitation: separating short-versus long-term effects using satellite data. Global Ecology and Biogeography 23:358–70. https://doi.org/10.1111/geb.12135.

    Article  Google Scholar 

  • Klos PZ, Link TE, Abatzoglou JT. 2014. Extent of the rain-snow transition zone in the Western U.S. under historic and projected climate. Geophysical Research Letters 41(13):4560–8.

    Article  Google Scholar 

  • Kwon H, Pendall E, Ewers BE, Cleary M, Naithani K. 2008. Spring drought regulates summer net ecosystem CO2 exchange in a sagebrush-steppe ecosystem. Agricultural & Forest Meteorology 148:381–91. https://doi.org/10.1016/j.agrformet.2007.09.010.

    Article  Google Scholar 

  • Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009. The velocity of climate change. Nature 462(7276):1052–5. https://doi.org/10.1038/nature08649.

    Article  CAS  PubMed  Google Scholar 

  • Mitra B, Mackay DS, Pendall E, Ewers BE, Cleary MB. 2014. Does vegetation structure regulate the spatial structure of soil respiration within a sagebrush steppe ecosystem? Journal of Arid Environments 103:1–10.

    Article  Google Scholar 

  • Mote PA, Snover K, Capalbo S, Eigenbrode SD, Glick P, Littell J, Raymondi R, Reeder S. 2014. Ch. 21 Northwest In: Melillo JM, Richmond TC, Yohe GW, Eds. Climate change impacts in the United States: the Third National Climate Assessment. U.S. Global Change Research Program, 841 pp. https://doi.org/10.7930/j0z31wj2.

  • Nayak A, Marks D, Chandler DG, Seyfried MS. 2010. Long-term snow, climate, and streamflow trends at the Reynolds Creek Experimental Watershed, Owyhee Mountains, Idaho, United States. Water Resources Research 46:1–15. https://doi.org/10.1029/2008WR007525.

    Article  Google Scholar 

  • Nutini F, Boschetti M, Candiani G, Bocchi S, Brivio PA. 2014. Evaporative fraction as an indicator of moisture condition and water stress status in semi-arid rangeland ecosystems. Remote Sensing 6:6300–23. https://doi.org/10.3390/rs6076300.

    Article  Google Scholar 

  • Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286.

    Article  CAS  PubMed  Google Scholar 

  • Prater MR, DeLucia EH. 2006. Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities. Agricultural & Forest Meteorology 139:154–63.

    Article  Google Scholar 

  • Polley HW, Briske DD, Morgan JA, Wolter K, Bailey DW, Brown JR. 2013. Rangeland Ecology and Management 66:493–511. https://doi.org/10.2111/REM-D-12-00068.1.

    Article  Google Scholar 

  • Reba ML, Marks D, Pomeroy J, Link TE. 2009. An assessment of corrections to turbulent fluxes over snow by eddy covariance in mountain environments. Water Resources Research 45:W00D38, https://doi.org/10.1029/2008wr007045.

  • Reed DE, Ewers BE, Pendall E, Naithani KJ, Kwon H, Kelly RD. 2018. Biophysical factors and canopy coupling control ecosystem water and carbon fluxes of semiarid sagebrush ecosystems. Rangeland Ecology and Management 71(3):309–17.

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D and others. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–39.

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Burba GG, Davis KJ, Flanagan LB, Katul GG, Munger JW, Ricciuto DM, Stoy PC, Suyker AE, Verma SB, Wofsy SC. 2006. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agricultural & Forest Meteorology 136:1–18.

    Article  Google Scholar 

  • Schmidt M, Reichenau TG, Fiener P, Schneider K. 2012. The carbon budget of a winter wheat field: an eddy covariance analysis of seasonal and inter-annual variability. Agriculture and Forest Meteorology 165:114–26.

    Article  Google Scholar 

  • Scott RL, Huxman TE, Cable WL, Emmerich WE. 2006. Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland. Hydrological Processes 20:3227–43.

    Article  CAS  Google Scholar 

  • Scott RL, Biederman JA, Hamerlynck EP, Barron-Gafford GA. 2015. The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought. Journal of Geophysical Research: Biogeosciences 120:2612–24. https://doi.org/10.1002/2015JG003181.

    Article  CAS  Google Scholar 

  • Schlaepfer DR, Lauenforth WK, Bradford JB. 2012. Consequences of declining snow accumulation for water balance of mid-latitude dry regions. Global Change Biology 18:1988–97. https://doi.org/10.1111/j.1365-2486.2012.02642.x.

    Article  Google Scholar 

  • Schoenberger PJ, Wysocki DA, Benham EC, Broderson WD. 2002. Field book for describing and sampling soils. Version 2.0. Lincoln, Nebraska: Natural Resources Conservation Service, National Soil Survey Center.

  • Seyfried M, Lohse K, Marks D, Flerchinger G, Pierson F, Holbrook WS. 2018. Reynolds Creek Experimental Watershed and Critical Zone Observatory. Vadose Zone J. 17:180129. https://doi.org/10.2136/vzj2018.07.0129.

    Article  CAS  Google Scholar 

  • Sherrod LA, Dunn G, Peterson GA, Kolberg RL. 2002. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Science Society of America Journal 66:299–305.

    Article  CAS  Google Scholar 

  • Shinneman DJ, Halford AS, Howell C, Krasnow KD, Strand EK. 2015. Management of aspen in a changing environment. Great Basin Fact Sheet Series Number 12. http://www.sagegrouseinitiative.com/management-of-aspen-in-a-changing-environment/.

  • Smith TJ, McNamara JP, Flores AN, Gribb MM, Aishlin PS, Benner SG. 2011. Small soil storage capacity limits benefit of winter snowpack to upland vegetation. Hydrological Processes 25:3858–65.

    Article  Google Scholar 

  • Svejcar T, Mayeux H, Angell R. 1997. The rangeland carbon dioxide flux project. Rangelands 19(5):16–18.

    Google Scholar 

  • Svejcar T, Angell R, Bradford JA, Dugas W, Emmerich W, Frank AB, Gilmanov T, Haferkamp M, Johnson DA, Mayeux H, Mielnick P, Morgan J, Saliendra NZ, Schuman GE, Sims PL, Snyder K. 2008. Carbon fluxes on North American rangelands. Rangeland Ecolology and Management 61(5):465–74.

    Article  Google Scholar 

  • White T, Brantley S, Banwart S, Chorover J, Dietrich W, Derry L, Lohse K, Anderson S, Aufdendkampe A, Bales R, Kumar P, Richter D, McDowell B. 2015. The Role of Critical Zone Observatories in Critical Zone Science. Developments in Earth Surface Processes 19:15–78.

    Article  Google Scholar 

  • Whittaker RH, Niering WA. 1975. Vegetation of Santa Catalina mountains, Arizona. 5. Biomass, production, and diversity along elevation gradient. Ecology 56(4):771–90. https://doi.org/10.2307/1936291.

    Article  Google Scholar 

  • Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel KN, Šigut L, Menzer O, Reichstein M. 2018. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15:5015–30.

    Article  CAS  Google Scholar 

  • Wylie BK, Johnson DA, Laca E, Saliendrs NZ, Gilmanov TG, Reed BC, Tieszen LL, Worstell BB. 2003. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem. Remote Sensing of Environment 85:243–55.

    Article  Google Scholar 

  • Young JA, Longland WS. 1996. Impact of alien plants on Great Basin rangelands. Weed Technology 10:384–91.

    Article  Google Scholar 

  • Yu Q, Flerchinger GN. 2008. Extending simultaneous heat and water (SHAW) model to simulate carbon dioxide and water fluxes over wheat canopy, Ch. 7. In: Ahuja LR, Reddy VR, Saseendran SA, Yu Q, Eds. Response of crops to limited water: understanding and modeling water stress effects on plant growth processes. Advances in Agricultural Systems Modeling Ser. 1. ASA, CSSA, SSSA, Madison, WI. 436 pp.

Download references

Acknowledgements

This research was performed in collaboration with the United States Department of Agriculture Agricultural Research Service, Northwest Watershed Research Center in Boise, Idaho and the landowners within the Reynolds Creek Critical Zone Observatory. This work was supported by the National Science Foundation for Reynolds Creek Critical Zone Observatory Cooperative agreement under award #NSF EAR 1331872. USDA is an equal-opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald N. Flerchinger.

Additional information

Author's Contribution

GNF conceived the paper. AWF contributed to data analysis. MSS, KAL, and PEC contributed research with respect to soils and vegetation analyses. All authors contributed substantial portions of the text.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flerchinger, G.N., Fellows, A.W., Seyfried, M.S. et al. Water and Carbon Fluxes Along an Elevational Gradient in a Sagebrush Ecosystem. Ecosystems 23, 246–263 (2020). https://doi.org/10.1007/s10021-019-00400-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00400-x

Keywords

Navigation