Skip to main content

Advertisement

Log in

Legacies of Historical Exploitation of Natural Resources Are More Important Than Summer Warming for Recent Biomass Increases in a Boreal–Arctic Transition Region

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Eurasian forest cover at high northern latitudes (> 67°N) has increased in recent decades due to stimulatory effects of global warming, but other factors may be important. The objective of this study is to compare the importance of historical human exploitation and climate change. Periodic information on forest and tundra resources along with human and domestic animal populations and forest harvesting was collected from sources like official statistics and maps and compiled for joint analysis. Our results show that the northernmost birch and Scots pine forests of the world often presumed as pristine were repeatedly exploited by logging, agriculture and grazing in the last century. In addition, repeated moth outbreaks have also had regulatory impacts on birch forest development. Despite these disturbances, forested area quadrupled during the period, largely because of reduced human activities in recent decades. Linear modelling confirms that the most important predictors for the variation in Scots pine and birch biomass and area were logging, grazing and farming activity, and not climatic changes. The dynamics in the forest cover over the last century seem to follow the ‘repeated human perturbation’ scenario. This study’s application of legacy data, and historical and long-term data and evaluation of how the different drivers impacted some of the northernmost forests are essential to understand whether the greening of the boreal and arctic regions is a result of recent climate change or a recovery from earlier human impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abatzoglou JT, Williams AP. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113:11770–5.

    Article  CAS  Google Scholar 

  • Abis B, Brovkin V. 2017. Environmental conditions for alternative tree-cover states in high latitudes. Biogeosciences 14:511–27.

    Article  CAS  Google Scholar 

  • Bjerke JW, Karlsen SR, Høgda KA, Malnes E, Jepsen JU, Lovibond S, … Tømmervik H. 2014. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environmental Research Letters 9:084006.

  • Bjerke JW, Tømmervik H, Zielke M, Jørgensen M. 2015. Impacts of snow season on ground-ice accumulation, soil frost and primary productivity in a grassland of sub-Arctic Norway. Environmental Research Letters 10:095007.

    Article  CAS  Google Scholar 

  • Bjørklund PK, Rekdal Y, Strand GH. 2015. Arealregnskap for utmark. Arealstatistikk for Finnmark. Ressursoversikt 01/2015 Skog og landskap (NIBIO). Ås, Norway. ISBN 978-82-311-1012-5 ISSN 1504-6966. 90p.

  • Bokhorst SF, Bjerke JW, Tømmervik H, Callaghan TV, Phoenix GK. 2009. Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97:1408–15.

    Article  Google Scholar 

  • Bokhorst S, Bjerke JW, Tømmervik H, Preece C, Phoenix GK. 2012. Ecosystem Response to Climatic Change: The importance of the Cold Season. Ambio 41(Supplement 3):246–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bråthen KA, Ravolainen VT, Stien A, Tveraa T, Ims RA. 2017. Rangifer management controls a climate-sensitive tundra state transition. Ecological Applications 8:2416–27.

    Article  Google Scholar 

  • Bråthen KA, Gonzalez VT, Yoccoz NG. 2018. Gatekeepers to the effects of climate warming? Niche construction restricts plant community changes along a temperature gradient. Perspectives in Plant Ecology, Evolution and Systematics 30:71–81.

    Article  Google Scholar 

  • Bürgi M, Östlund L, Mladenoff DJ. 2017. Legacy Effects of Human Land Use: Ecosystems as Time-Lagged Systems. Ecosystems 20:94–103.

    Article  Google Scholar 

  • Callaghan TV, Jonasson C, Thierfelder T, Zhenlin Y, Hedenås H, Johansson M, … Sloan VL. 2013. Ecosystem change and stability over multiple decades in the Swedish sub-Arctic: complex processes and multiple drivers. Philosophical Transactions of the Royal Society, B, Biological Sciences 368:20120488.

  • Crawford RMM, Jeffree CE, Rees WG. 2003. Paludification and forest retreat in northern oceanic environments. Annals of Botany 91:213–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Central Bureau of Statistics of Norway - Statistics Norway 1955. Forbruket av trevirke på gårdene 1952/53 [Consumption of wood on farms 1952/53]. Report XI No. 210. Central Bureau of Statistics of Norway, Oslo.

  • Central Bureau of Statistics of Norway - Statistics Norway 1960. Census of Forestry, September 1, 1957. Report XII No. 21. Central Bureau of Statistics of Norway, Oslo.

  • County governor of Finnmark. 2015. Årsmelding 2015 [Yearly report 2015]. Alta. 36p.

  • Dalen L, Hofgaard A. 2005. Differential regional treeline dynamics in the Scandes Mountains. Arctic Antarctic and Alpine Research 37:284–96.

    Article  Google Scholar 

  • Didan K. 2015. MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006. distributed by NASA EOSDIS LP DAAC, https://doi.org/10.5067/modis/mod13c1.006.

  • de Beurs KM, Townsend PA. 2008. Estimating the effect of gypsy moth defoliation using MODIS. Remote Sensing of Environment 112:3983–90.

    Article  Google Scholar 

  • den Herder M, Virtanen R, Roininen H. 2004. Effects of reindeer browsing on tundra willow and its associated insect herbivores. Journal of Applied Ecology 41:870–9.

    Article  Google Scholar 

  • Eidem P. 1956. En oversikt over skoggrenseundersøkelser i Norge. Norsk Geografisk Tidsskrift 15:159–72.

    Article  Google Scholar 

  • Epstein HE, Raynolds M., Walker DA, Bhatt US, Tucker CJ, Pinzon JE. 2012. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letter, 015506.

  • Fauchald P, Park T, Tømmervik H, Myneni RB, Hausner VH. 2017. Arctic greening from warming promotes declines in caribou populations. Science Advances 3:e1601365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Finnmark skogsselskap 2010. Årsmelding 2009 [Yearly report 2010]. Alta. 36p.

  • Foster DR, Motzkin G, Slater B. 1998. Land-use history as longterm broad-scale disturbance: regional forest dynamics in Central New England. Ecosystems 1:96–119.

    Article  Google Scholar 

  • Friesen PC, Peixoto MM, Busch FA, Johnson DC, Sage RF. 2014. Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates. Journal of Experimental Botany 65:3749–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller J, Foster DR, McLacklan JS, Drake N. 1998. Impact of human activity on regional forest composition and dynamics in Central New England. Ecosystems 1:76–95.

    Article  Google Scholar 

  • Førland E, Jacobsen JS, Denstadli JM, Hanssen-Bauer I, Hygen HO, Lohmann M, Tømmervik H. 2013. Cool weather tourism under global warming: Comparing Arctic summer tourists’ weather preferences with regional climate statistics and projections. Tourism Management 36:567–79.

    Article  Google Scholar 

  • General Director for Forestry in Norway. 1914. Skogkart over det nordlige Norge. Forest map for northern Norway. Scale: 1:500 000. Kristiania (Oslo), Norway.

  • Goetz SJ, Mack MC, Gurney KR, Randerson JT, Houghton RA. 2007. Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America. Environmental Research Letters 2:045031.

    Article  Google Scholar 

  • Goward SN, Tucker CJ, Dye DG. 1985. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64:3–14.

    Article  Google Scholar 

  • Hofgaard A, Tømmervik H, Rees G, Hanssen F. 2013. Latitudinal forest advance in northernmost Norway since the early 20th century. Journal of Biogeography 40:938–49.

    Article  Google Scholar 

  • IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, D. Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A. Xia, Y, Bex,V, Midgley PM, Eds.] (1535 pp). United Kingdom and New York, NY, USA: Cambridge University Press, Cambridge.

  • Jepsen JU, Hagen SB, Ims RA, Yoccoz NG. 2008. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest:evidence of a recent outbreak range expansion. Journal of Animal Ecology 77:257–64.

    Article  Google Scholar 

  • Jepsen JU, Hagen SB, Høgda KA, Ims RA, Karlsen SR, Tømmervik H, Yoccoz NG. 2009. Monitoring the spatio-temporal dynamics of geometrid moth outbreaks in birch forest using MODIS-NDVI data. Remote Sensing of Environment 113:1939–47.

    Article  Google Scholar 

  • Johansen B. 2009. Vegetasjonskart for Norge basert på Landsat TM/ETM+ data. Tromsø, Northern Research Institute – Norut, 87 pp.

  • Juul J. 1925. Furuens utbredelse i Finnmark og Troms [The pine forest distribution in Finnmark and Troms counties]. Tidsskrift for Skogbruk 7–8:359–440.

    Google Scholar 

  • Karlsen SR, Jepsen JU, Odland A, Ims RA, Elvebakk A. 2013. Outbreaks by canopy-feeding geometrid moth cause state-dependent shifts in understory plant communities. Oecologia 173:859–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kibsgaard Ø. 2011. Skogens Historie - Merkeår - Nord-Norge. Bodø, Norway: County governor of Nordland. p 62p.

    Google Scholar 

  • Klem PG. 2012. Hvordan var helleristningsbåtene bygget? Årbok Norsk Maritim Museum 2011:75–98.

    Google Scholar 

  • Komatsu G, Baker VR, Arzhannikov SG, Gallagher R, Arzhannikova AV, Murana A, Oguchi T. 2016. Catastrophic flooding, palaeolakes, and late Quaternary drainage reorganization in northern Eurasia. International Geology Review 58:1693–722.

    Article  Google Scholar 

  • Kuuluvainen T, Hofgaard A, Aakala T, Jonsson BG. 2017. North Fennoscandian mountain forests: History, composition, disturbance dynamics and the unpredictable future. Forest Ecology and Management 385:140–9.

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H. 2004. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–503.

    Article  CAS  PubMed  Google Scholar 

  • Miller PA, Gieseke T, Hickler T, Bradshaw RHW, Smith B, Seppä H, … Sykes MT. 2008. Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia. Journal of Ecology 96:247–59.

  • Moen A. 1998. Nasjonalatlas for Norge. Vegetasjon. Statens kartverk, Hønefoss.

  • NIBIO. 2012. Census of forestry 2005–2012. Area statistics from Finnmark. http://kart13.skogoglandskap.no/arealressursstatistikk.

  • Normand S, Høye TT, Forbes BC, Bowden JJ, Davies AL, Odgard BV, … Wischnewski, xxx. 2017. Legacies of Historical Human Activities in Arctic Woody Plant Dynamics. Annual Review of Environment and Resources 42:541–67.

  • Norwegian Agriculture Agency. 2017. Ressursregnskapet for reindriftsnæringen 2016-17. Norway: Alta.

    Google Scholar 

  • Norwegian Mapping Authority. 1990. Land cover map for Norway. Digital version 1990.

  • Norwegian Mapping Authority. 2013. Land cover map for Norway. Digital version 2013.

  • Norwegian Meteorological Institute. 2017. eKlima – Free access to weather- and climate data from Norwegian Meteorological Institute from historical data to real time observations http://eklima.met.no/ Last accessed 2017.12.10.

  • Odasz-Albrigtsen AM, Tømmervik H, Murphy P. 2000. Decreased photosynthetic efficiency in plant species exposed to multiple airborne pollutants along the Russian-Norwegian Border. Canadian Journal of Botany 78:1021–33.

    Article  CAS  Google Scholar 

  • Oksanen L, Virtanen R. 1995. Topographic, altitudinal and regional patterns in continental and suboceanic heath vegetation of northern Fennoscandia. Acta Botanica Fennica 153:1–80.

    Google Scholar 

  • Øyen BH. 1998. Skogbrann i Norge de siste 200 år. Oppdragsrapport fra Norsk institutt for skogforskning nr. 8/98.

  • Park T, Ganguly S, Tømmervik H, Euskirchen ES, Høgda KA., Karlsen SR, Brovkin V, … Myneni RB. 2016. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters 11:084001.

  • Pinzon JE, Tucker CJ. 2014. A non-stationary 1981–2012 AVHRR NDVI3 g time series. Remote Sensing 6:6929–60.

    Article  Google Scholar 

  • Riseth JÅ, Tømmervik H, Bjerke JW. 2016. 175 years of adaptation: North Scandinavian Sámi reindeer herding between government policies and winter climate variability (1835–2010). Journal of Forest Economics 24:186–204.

  • Ruden T. 1949. Trekk fra Nord-Norges skoger. Det Norske Skogselskap gjennom 50 år. Jubileumsbok (ed. by T. Kierulf), (pp. 224–243). Oslo: Det Norske Skogselskap.

  • Ruef K. 1984. Winterschlacht im Mai. Die Zerreißprobe des Gebirgskorps Norwegen (XIX. Geb. A.K.) vor Murmansk. (367p). Graz: Stocker Leopold Verlag. ISBN 3702004726.

  • Sabatini FM, Burrascano S, Keeton WS, Levers C, Lindner M, Pötzschner F, … Kuemmerle T. 2018. Where are Europe’s last primary forests? Diversity and Distributions 24:1426–39.

  • Sjögren P. and Damm C. 2018. Holocene vegetation change in northernmost Fennoscandia and the impact on prehistoric foragers 12 000–2000 cal. a BP – A review. Boreas 48:20–35.

  • Skogan JK. 1993. Norway, Russia and the significance of the Kola-Peninsula in historical-perspective. Internasjonal politikk 51:37–59.

    Google Scholar 

  • Song XP, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR. 2018. Global land change from 1982 to 2016. Nature 560:639–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steen Jacobsen JK, Tømmervik H. 2016. Leisure traveller perceptions of iconic coastal and fjord country side areas: Lush naturalness or remembrance of agricultural times past. Land Use Policy 54:38–46.

    Article  Google Scholar 

  • Svenning JC, Eiserhardt WL, Nordmand S, Ordoonez A, Sandel, B. 2015. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annual Review of Ecology, Evolution, and Systematics 46:551–72.

  • Tape K, Sturm M, Racine C. 2006. The evidence for shrub expansion in northern Alaska and the Pan-Arctic. Global Change Biology 12:686–702.

    Article  Google Scholar 

  • te Beest M, Sitters J, Ménard CB, Olofsson J. 2016. Reindeer grazing increases summer albedo by reducing shrub abundance in Arctic tundra. Environmental Research Letters 11:125013.

    Article  Google Scholar 

  • Tenow O. 1972. The outbreaks of Oporinia autumnata Bkh. & Operophthera spp. (Lep., Geometridae) in the Scandinavian mountain chain and northern Finland 1862–1968. Zoologiska Bidrag Från Uppsala. Supplement 2, 107 pp.

  • Tenow O, Nilssen AC, Bylund H, Hogstad O. 2007. Waves and synchrony in Epirrita autumnata/Operopthera brumata outbreaks. I. Lagged synchrony: regionally, locally and among species. Journal of Animal Ecology 76:258–68.

    Article  CAS  Google Scholar 

  • Tomter S. 2012. Nå teller han deg også – hele landets skogareal kartlagt. Skog og Landskap 07/12, Fact sheet, 2p.

  • Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8:127–50.

    Article  Google Scholar 

  • Tømmervik H, Høgda KA, Solheim I. 2003. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multi-temporal Landsat MSS/TM data. Remote Sensing of Environment 85:370–88.

    Article  Google Scholar 

  • Tømmervik H, Johansen B, Tombre I, Thannheiser D, Høgda KA, Gaare E, Wielgolaski FE. 2004. Vegetation changes in the mountain birch forests due to climate and/or grazing. Arctic Antarctic Alpine Research 36:322–31.

    Article  Google Scholar 

  • Tømmervik H, Johansen B, Riseth JÅ, Karlsen SR, Solberg B, Høgda KA. 2009. Above ground biomass changes in the mountain birch forests and mountain heaths of Finnmarksvidda, Northern Norway, in the period 1957-2006. Forest Ecology and Management 257:244–57.

    Article  Google Scholar 

  • Tømmervik H, Bjerke JW, Gaare E, Johansen B, Thannheiser D. 2012. Rapid recovery of recently overexploited winter grazing pastures for reindeer in northern Norway. Fungal Ecology 5:3–15.

    Article  Google Scholar 

  • Virtanen R, Oksanen L, Oksanen T, Cohen J, Forbes BC, Johansen B, Tømmervik H. 2016. Where do the treeless tundra areas of northern highlands fit in the global biome system: Towards an ecologically natural subdivision of the tundra biome. Ecology and Evolution 6:143–58.

    Article  PubMed  Google Scholar 

  • Vogelsang TJ, 1998. Trend function hypothesis testing in the presence of serial correlation. Econometrica 123–48.

  • Wang J, Rich PM, Price K, Kettle WD. 2004. Relations between NDVI and tree productivity in the central Great Plains. International Journal of Remote Sensing 25:3127–38.

    Article  Google Scholar 

  • Williams AP, Xu C, McDowell NG. 2011. Who is the new sheriff in town regulating boreal forest growth? Environmental Research Letters 6:041004.

    Article  Google Scholar 

  • Wielgolaski FE 2005. History and environment of the Nordic mountain birch. Plant ecology, herbivory, and human impact in Nordic mountain birch forests. Wielgolaski FE, Ed. Ecological Studies 180 Berlin Heidelberg: Springer-Verlag New York, p 3–18.

  • Wielgolaski FE, Sonesson M. 2001. Nordic Mountain Birch Ecosystems - A Conceptual Overview. Nordic Mountain Birch Ecosystems. Wielgolaski FE, Ed. Man and Biosphere, 27, Paris, New York: UNESCO, Parthenon Publishing Group, New York. p 377–88.

  • Xu L, Myneni RB, Chapin III FS, Callaghan, T.V., Pinzon, JE, Tucker, CJ, … Stroeve JC. 2013. Temperature and Vegetation Seasonality Diminishment over Northern Lands. Nature Climate Change 3:581–6.

  • Yang W. 2013. The case for being automatic: introducing the automatic linear modeling (LINEAR) procedure in SPSS statistics. Multiple Linear Regression Viewpoints 39:27–37.

    Google Scholar 

Download references

Acknowledgements

This study was mainly financed by the Research Council of Norway (grants 227064 ArcticBiomass and 270992 SvalbardBiomass) and the Norwegian Institute for Nature Research. The work was also partially supported by the NASA Earth Science Division (grants NNX16AO34H and NNX14AI71G) and CLINF-a Nordic Centre of Excellence project funded by Nordforsk. We acknowledge the NASA GIMMS group for sharing NDVI3 g data.

Data Accessibility

All data used in the article is presented in tables in the main article and the Supplementary (Supporting Information).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Tømmervik.

Additional information

Author Contributions

The project was conceived and designed by HT and JWB. FH, TP and HT were involved in map design and production. Data analysis was carried out by HT, JWB, TP, FH and RBM. Manuscript preparation was led by HT, with support (critical feedback, revisions and additions to text) from all co-authors. Final version of the manuscript was read and approved by all co-authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tømmervik, H., Bjerke, J.W., Park, T. et al. Legacies of Historical Exploitation of Natural Resources Are More Important Than Summer Warming for Recent Biomass Increases in a Boreal–Arctic Transition Region. Ecosystems 22, 1512–1529 (2019). https://doi.org/10.1007/s10021-019-00352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00352-2

Keywords

Navigation