Skip to main content

Advertisement

Log in

Modelling Seasonal and Inter-annual Variations in Carbon and Water Fluxes in an Arid-Zone Acacia Savanna Woodland, 1981–2012

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Changes in climatic characteristics such as seasonal and inter-annual variability may affect ecosystem structure and function, hence alter carbon and water budgets of ecosystems. Studies of modelling combined with field experiments can provide essential information to investigate interactions between carbon and water cycles and climate. Here we present a first attempt to investigate the long-term climate controls on seasonal patterns and inter-annual variations in water and carbon exchanges in an arid-zone savanna-woodland ecosystem using a detailed mechanistic soil–plant–atmosphere model (SPA), driven by leaf area index (LAI) simulated by an ecohydrological model (WAVES) and observed climate data during 1981–2012. The SPA was tested against almost 3 years of eddy covariance flux measurements in terms of gross primary productivity (GPP) and evapotranspiration (ET). The model was able to explain 80 and 71% of the variability of observed daily GPP and ET, respectively. Long-term simulations showed that carbon accumulation rates and ET ranged from 20.6 g C m−2 mon−1 in the late dry season to 45.8 g C m−2 mon−1 in the late wet season, respectively, primarily driven by seasonal variations in LAI and soil moisture. Large climate variations resulted in large seasonal variation in ecosystem water-use efficiency (eWUE). Simulated annual GPP varied between 146.4 and 604.7 g C m−2 y−1. Variations in annual ET coincided with that of GPP, ranging from 110.2 to 625.8 mm y−1. Annual variations in GPP and ET were driven by the annual variations in precipitation and vapour pressure deficit (VPD) but not temperature. The linear coupling of simulated annual GPP and ET resulted in eWUE having relatively small year-to-year variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Baldocchi DD. 1994. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: II. CO2 exchange and water use efficiency. Agric For Meteorol 67(3):291–321.

    Article  Google Scholar 

  • Baldocchi DD. 1997. Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant Cell Environ 20:1108.

    Article  Google Scholar 

  • Baldocchi DD. 2008. Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26.

    Article  CAS  Google Scholar 

  • Baldocchi DD, Wilson KB. 2001. Modeling CO2 and water vapour exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol Model 142(1):155–84.

    Article  CAS  Google Scholar 

  • Barton CVM, Duursma RA, Medlyn BE, Ellsworth DS, Eamus D, Tissue DT, Adams MA, Conroy J, Crous KY, Liberloo M, Löw M, Linder S, McMurtrie RE. 2011. Effects of elevated atmospheric [CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna. Glob Chang Biol 18:585–95.

    Article  Google Scholar 

  • Beer C, Ciais P, Reichstein MD, Baldocchi D, Law BE, Papale D, Soussana JF, Ammann C, Buchmann N, Frank D, Gianelle D, Janssens IA, Knohl A, Ko stner B, Moors E, Roupsard O, Verbeeck H, Vesala T, Williams CA, Wohlfahrt G. 2009. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob Biogeochem Cycle 23(2):GB2018. doi:10.1029/2008GB003233.

    Article  Google Scholar 

  • Berry G, Reeder MJ, Jakob C. 2011. Physical mechanisms regulating summertime rainfall over northwestern Australia. J Clim 24:3705–17.

    Article  Google Scholar 

  • Bowman D, Brown GK, Braby MF, Brown JR, Cook LG, Crisp MD, Ford F, Haberle S, Hughes J, Isagi Y, Joseph L, McBride J, Nelson G, Ladiges PY. 2010. Biogeography of the Australian monsoon tropics. J Biogeography 37:201–16.

    Article  Google Scholar 

  • Braswell BH, Sacks WJ, Linder E, Schimel DS. 2005. Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob Change Biol 11(2):335–55.

    Article  Google Scholar 

  • Chen XY, Bowler JM, Magee JW. 1991. Aeolian landscapes in central Australia: gypsiferous and quartz dune environments from Lake Amadeus. Sedimentology 38(3):519–38.

    Article  Google Scholar 

  • Chen C, Eamus D, Cleverly J, Boulain N, Cook P. 2014. Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland. J Hydrol 519(2014):1084–96.

    Article  Google Scholar 

  • Cleverly J. 2011. Alice Springs Mulga OzFlux site, OzFlux: Australian and New Zealand flux research and monitoring network, hdl: 102.100.100/8697.

  • Cleverly J, Boulain N, Villalobos-Vega R, Grant N, Faux R, Wood C, Cook PG, Yu Q, Leigh A, Eamus D. 2013. Dynamics of component carbon fluxes in a semi-arid Acacia woodland, central Australia. J Geophys Res Biogeosci 118(3):1168–85.

    Article  CAS  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–36.

    Article  Google Scholar 

  • Collatz GJ, Ribas-Carbo M, Berry JA. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aus J Plant Physiol 19:519–38.

    Article  Google Scholar 

  • Dawes W, Hatton TJ. 1993. Topog_IRM 1. Model description. CSIRO Division of Water Resources, Technical Memorandum 93: 33

  • Dawes WR, Zhang L, Dyce P. 1998. WAVES V3.5 user manual. Canberra: CSIRO Land and Water.

    Google Scholar 

  • Eamus D. 2003. How does ecosystem water balance affect net primary productivity of woody ecosystems? Funct Plant Biol 30:187–205.

    Article  Google Scholar 

  • Eamus D, Cole S. 1997. Diurnal and seasonal comparisons of assimilation, phyllode conductance and water potential of tree Acacia and one Eucalyptus species in the wet-dry tropics of Australia. Aust J Bot 45:275–90.

    Article  Google Scholar 

  • Eamus D, Prior L. 2001. Ecophysiology of trees of seasonally dry tropics: comparisons among phenologies. Adv Ecol Res 32:113–97.

    Article  CAS  Google Scholar 

  • Eamus D, Boulain N, Cleverly J, Breshears DD. 2013a. Global change-type drought-induced tree mortality: vapour pressure deficit is more important than temperature per se in causing decline in tree health. Ecol Evol 3:2711–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eamus D, Cleverly J, Boulain N, Grant N, Faux R, Villalobos-Vega R. 2013b. Carbon and water fluxes in an arid-zone Acacia savanna woodland: an analyses of seasonal patterns and responses to rainfall events. Agric For Meteorol 182–183:225–38.

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA, Williams M, Lola da Costa A, Malhi Y, da Costa RF, Almeida S, Meir P. 2007. The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Glob Change Biol 13:1–18.

    Article  Google Scholar 

  • Flanagan LB, Adkinson AC. 2011. Interacting controls on productivity in a northern great plains grassland and implications for response to ENSO events. Glob Change Biol 17:3293–311.

    Article  Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K. 1996. Climate Change 1995. The science of climate change: Cambridge University Press, Cambridge. 572

    Google Scholar 

  • Ihara C, Kushnir Y, Cane MA. 2008. Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004. J Clim 21:2035–46.

    Article  Google Scholar 

  • IPCC. 2014. Working Group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Jarvis PG, McNaughton KG. 1986. Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49.

    Article  Google Scholar 

  • Jeffrey SJ, Carter JO, Moodie KB, Beswick AR. 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ Model Softw 16:309–30.

    Article  Google Scholar 

  • Kong Q, Zhao S. 2010. Heavy rainfall caused by interactions between monsoon depression and middle-latitude systems in Australia: a case study. Meteorol Atmos Phys 106:205–26.

    Article  Google Scholar 

  • Landsberg JJ, Coops NC. 1999. Modeling forest productivity across large areas and long periods. Nat Res Model 12:383–411.

    Article  Google Scholar 

  • Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli K, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2002. Environmental controls over carbon dioxide and water vapour exchange of terrestrial vegetation. Agric For Meteorol 113:97–120.

    Article  Google Scholar 

  • Leuning R. 1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18(4):339–55.

    Article  CAS  Google Scholar 

  • Linderson ML, Mikkelsen TN, Ibrom A, Lindroth A, Ro-Poulsen H, Pilegaard K. 2012. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modelled in-canopy light distribution. Agric For Meteorol 152:201–11.

    Article  Google Scholar 

  • MacFarlane C, Hoffman M, Eamus D, Kerp N, Higginson S, McMurtrie R, Adams M. 2007. Estimation of leaf area index in eucalypt forest using digital photography. Agric For Meteorol 143:176–88.

    Article  Google Scholar 

  • Migliavacca M, Meroni M, Manca G, Matteucci G, Montagnani L, Grassi G, Zenone T, Teobaldelli M, Goded I, Colombo R, Seufert G. 2009. Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions. Agric For Meteorol 149(9):1460–76.

    Article  Google Scholar 

  • Monteith J, Unsworth M. 2008. Principles of environmental physics. Edward Arnold: London. p 250.

    Google Scholar 

  • Morton SR, Stafford Smith DM, Dickman CR, Dunkerley DL, Friedel MH, McAllister RRJ, Reid JRW, Roshier DA, Smith MA, Walsh FJ, Wardle GM, Watson IW, Westoby M. 2011. A fresh framework for the ecology of arid Australia. J Arid Environ 75(4):313–29.

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5625):1560–3.

    Article  CAS  PubMed  Google Scholar 

  • Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ. 2008. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol 177:209–19.

    CAS  PubMed  Google Scholar 

  • Nix HA, Austin MP. 1973. Mulga: a bioclimatic analysis. Tropic Grassl 7:9–20.

    Google Scholar 

  • O’Grady AP, Cook PG, Eamus D, Duguid A, Wischusen JDH, Fass T, Worldege D. 2009. Convergence of tree water use within an arid-zone woodland. Oecologia 160:643–55.

    Article  PubMed  Google Scholar 

  • Papalexiou SM, Koutsoyiannis D. 2013. Battle of extreme value distributions: a global survey on extreme daily rainfall. Water Resour Res 49:10.

    Article  Google Scholar 

  • Perez-Ruiz ER, Garatuza-Payan J, Watts CJ, Rodriguez JC, Yepez EA, Scott RL. 2010. Carbon dioxide and water vapour exchange in a tropical dry forest influenced by the North American Monsoon System (NAMS). J Arid Environ 74:556–63.

    Article  Google Scholar 

  • Ponce-Campos GE, Moran MS, Huete A, Zhang Y, Bresloff C, Huxman TE, Eamus D, Bosch DD, Buda AR, Gunter SA, Scalley TH, Kitchen SG, McClaran MP, McNab WH, Montoya DS, Morgan JA, Peters DPC, Sadler JE, Seyfried MS, Starks PJ. 2013. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494:349–52.

    Article  CAS  PubMed  Google Scholar 

  • Ponton S, Flanagan LB, Alstad KP, Johnson BG, Morgenstern K, Kljun N, Black TA, Barr AG. 2006. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biol 12:294–310.

    Article  Google Scholar 

  • Raz-Yaseef N, Yakir D, Schiller G, Cohen S. 2012. Dynamics of evapotranspiration partitioning in a semi-arid forest as affected by temporal rainfall patterns. Agric For Meteorol 157:77–85.

    Article  Google Scholar 

  • Running SW, Coughlan JC. 1988. A general model of forest ecosystem processes for regional applications. 1. Hydrological balance, canopy gas exchange and primary production processes. Ecol Model 42:125–54.

    Article  CAS  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T. 1999. A dipole mode in the tropical Indian Ocean. Nature 401:360–3.

    CAS  PubMed  Google Scholar 

  • Salinger MJ. 2005. Climate variability and change: past, present and future-an overview. Clim Chang 70(1–2):9–29.

    Article  CAS  Google Scholar 

  • Schwarz PA, Law BE, Williams M, Irvine J, Kurpius M, Moore D. 2004. Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems. Global Biogeochem Cycle 18:1–17.

    Article  Google Scholar 

  • Shao MA, Huang M, Zhang L, Li YS. 2002. Simulation of field-scale water balance on the Loess Plateau using the WAVES model. ACIAR Monogr 84:48–56.

    Google Scholar 

  • Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich Iii J, Moore Iii B, Vörösmarty CJ. 2000. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecol Biogeogr 9(4):315–35.

    Article  Google Scholar 

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesley ML. 2000. Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300.

    Article  Google Scholar 

  • Van Etten EJB. 2009. Inter-annual rainfall variability of arid Australia: greater than elsewhere? Aust Geogr 40:109–20.

    Article  Google Scholar 

  • Wang H, Zhang L, Dawes WR, Liu C. 2001. Improving water use efficiency of irrigated crops in the North China Plain—measurements and modelling. Agric Water Manag 48(2):151–67.

    Article  Google Scholar 

  • Wang X, Wang C, Yu G. 2008. Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements. Sci China D 51:1129–43.

    Article  CAS  Google Scholar 

  • Weiss M, Baret F, Smith GJ, Jonckheere I, Coppin P. 2004. Review of methods for in situ leaf area index (LAI) determination Part II, estimation of LAI, errors and sampling. Agric For Meteorol 121:37–53.

    Article  Google Scholar 

  • Whitley RJ, Macinnis-Ng CM, Hutley LB, Beringer J, Zeppel M, Williams M, Taylor D, Eamus D. 2011. Is productivity of mesic savannas light limited or water limited? Results of a simulation study. Glob Change Biol 17(10):3130–49.

    Article  Google Scholar 

  • Williams M, Rastetter EB, Fernandes DN, Goulden ML, Wofsy SC, Shaver GR, Melillo JM, Munger JW, Fan SM, Nadelhoffer KJ. 1996. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant Cell Environ 19(8):911–27.

    Article  Google Scholar 

  • Williams M, Malhi Y, Nobre AD, Rastetter EB, Grace J, Pereira MGP. 1998. Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant Cell Environ 21(10):953–68.

    Article  Google Scholar 

  • Williams M, Eugster W, Rastetter EB, Mcfadden JP, Chapin Iii FS. 2000. The controls on net ecosystem productivity along an Arctic transect: a model comparison with flux measurements. Glob Change Biol 6(S1):116–26.

    Article  Google Scholar 

  • Williams M, Law BE, Anthoni PM, Unsworth MH. 2001a. Use of a simulation model and ecosystem flux data to examine carbon-water interactions in Ponderosa pine. Tree Phys 21:287–98.

    Article  CAS  Google Scholar 

  • Williams M, Rastetter EB, Shaver GR, Hobbie JE, Carpino E, Kwiatkowski B. 2001b. Primary production of an Arctic watershed: an uncertainty analysis. Ecol Appl 11(6):1800–16.

    Article  Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Verma S, Valentini R. 2002. Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–43.

    Article  Google Scholar 

  • Winkworth RE. 1973. Eco-physiology of Mulga (Acacia aneura). Tropic Grassl 7(1):43–8.

    Google Scholar 

  • Wohlfahrt G, Fenstermaker LF, Arnone JA. 2008. Large annual net ecosystem CO2 uptake of a Mojave desert ecosystem. Glob Change Biol 14:1475–87.

    Article  Google Scholar 

  • Wu H, Rykiel EJ Jr, Hatton T, Walker J. 1994. An integrated rate methodology (IRM) for multi-factor growth rate modelling. Ecol Model 73:97–116.

    Article  Google Scholar 

  • Yan LM, Chen SP, Huang JH, Lin GH. 2011. Water regulated effects of photosynthetic substrate supply on soil respiration in a semiarid steppe. Glob Change Biol 17:1990–2001.

    Article  Google Scholar 

  • Zeppel M, Macinnis-Ng C, Palmer A, Taylor D, Whitley R, Fuentes S, Yunusa I, Williams M, Eamus D. 2008. An analysis of the sensitivity of sap flux to soil and plant variables assessed for an Australian woodland using a soil–plant–atmosphere model. Funct Plant Biol 35(6):509–20.

    Article  Google Scholar 

  • Zhang L, Dawes WR (Eds). 1998. WAVES-an integrated energy and water balance model. Technical Report No. 31/98, CSIRO Land and Water, Canberra, Australia.

  • Zhang L, Dawes WR, Hatton TJ. 1996. Modelling hydrologic processes using a biophysically based model application of WAVES to FIFE and HAPEX-MOBILHY. J Hydrol 185:147–69.

    Article  CAS  Google Scholar 

  • Zhang L, Dawes WR, Slavich PG, Meyer WS, Thorburn PJ, Smith DJ, Walker GR. 1999. Growth and ground water uptake responses of lucerne to changes in groundwater levels and salinity: lysimeter, isotope and modelling studies. Agric Water Manag 39(2):265–82.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Centre for Groundwater Research and Training (NCGRT) and the Australian Government’s Terrestrial Ecosystems Research Network (TERN). This work was supported also by OzFlux and the Australian Supersite Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Chen.

Additional information

Author contributions

Chao Chen conceived of this study, performed the research, analysed the data and wrote the paper; James Cleverly performed research, analysed the data and wrote the paper; Lu Zhang contributed the model, analysed the data and wrote the paper; Qiang Yu analysed the data and wrote the paper; Derek Eamus conceived of this study and wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Cleverly, J., Zhang, L. et al. Modelling Seasonal and Inter-annual Variations in Carbon and Water Fluxes in an Arid-Zone Acacia Savanna Woodland, 1981–2012. Ecosystems 19, 625–644 (2016). https://doi.org/10.1007/s10021-015-9956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9956-8

Keywords

Navigation