Skip to main content

Advertisement

Log in

Remnant Artificial Habitats as Biodiversity Islets into Forest Oceans

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Historical human activities are increasingly recognized by ecologists as important drivers of modern vegetation patterns and ecosystem functioning, but the length of time these legacies persist is poorly known. We determined whether medieval artificial habitats have left a long-lasting imprint in the current forest vegetation. We compared soil chemical properties, canopy conditions, actual vegetation, and soil seed bank patterns between 19 former feudal mottes and 19 paired control sites located in the same forest patches. Soil from the mottes contained more stones, organic matter, carbon, nitrogen, and phosphorus, and their pH was higher than for controls. Species richness and diversity of either vegetation or seed bank did not differ between mottes and controls, but species composition did, with more calciphilous and eutrophic species on the mottes. Mottes also hosted more competitive and competitive-ruderal species and more epizoochores. Centuries after their reclamation, medieval artificial habitats still generate particular soil conditions that are reflected by an original floristic composition compared to the same-aged surrounding understories of the lowland forests in which they occur. These long-lasting after-effects are better explained by the locally increased soil fertility than by dispersal limitation of forest species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Aubert G. 1978. Méthodes d’analyse des sols. Marseille: C.R.D.P.

    Google Scholar 

  • Bellemare J, Motzkin G, Foster DR. 2002. Legacies of the agricultural past in the forested present: an assessment of historical land-use effects on rich mesic forests. J Biogeogr 29:1401–20.

    Article  Google Scholar 

  • Bigwood DW, Inouye DW. 1988. Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69:497–507.

    Article  Google Scholar 

  • Bossuyt B, Hermy M. 2001. Influence of land use history on seedbanks in European temperate forest ecosystems: a review. Ecography 24:225–38.

    Article  Google Scholar 

  • Bossuyt B, Heyn M, Hermy M. 2002. Seedbank and vegetation composition of forest stands of varying age in central Belgium: consequences for regeneration of ancient forest vegetation. Plant Ecology 162:33–48.

    Article  Google Scholar 

  • Briggs JM, Spielmann KA, Schaafsma H, Kintigh KW, Kruse M, Morehouse K, Schollmeyer K. 2006. Ecology needs archaeologists, archaeology needs ecologists. Front Ecol Environ 4:180–8.

    Article  Google Scholar 

  • Chocholoušková Z, Pyšek P. 2003. Changes in composition and structure of urban flora over 120 years: a case study of the city of Plzeò. Flora 198:366–76.

    Article  Google Scholar 

  • Compton JE, Boone RD. 2000. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–30.

    Article  Google Scholar 

  • Dambrine E, Dupouey JL, Laüt L, Humbert L, Thinon M, Beaufils T, Richard H. 2007. Biodiversity patterns in present French forests related to former Roman agriculture. Ecology 88:1430–9.

    Article  CAS  PubMed  Google Scholar 

  • Decocq G. 2004. Utilisation de la flore et de la végétation actuelles en prospection archéologique. In: Racinet P, Schwerdroffer J, Eds. Méthodes et Initiations d’Histoire et d’Archéologie. 71st edn. Paris: Editions du Temps. p 55.

    Google Scholar 

  • Decocq G, Vieille V, Racinet P. 2002. Influence des facteurs historiques sur la végétation actuelle: le cas des mottes castrales en milieu forestier (Picardie, France). Acta Bot Gallica 149:197–215.

    Article  Google Scholar 

  • Diedhiou AG, Dupouey JL, Buee M, Dambrine E, Laüt L, Garbaye J. 2009. Response of ectomycorrhizal communities to past Roman occupation in an oak forest. Soil Biol Biochem 41:2206–13.

    Article  CAS  Google Scholar 

  • Dupouey JL, Dambrine E, Laffite JD, Moares C. 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–84.

    Article  Google Scholar 

  • Eberhardt RW, Foster DW, Motzkin G, Hall B. 2003. Conservation of changing landscapes: vegetation and land-use history of Cape Cod National Seashore. Ecol Appl 13:68–84.

    Article  Google Scholar 

  • Egan D, Howell EA. 2001. The historical ecology handbook: a restorationist’s guide to reference ecosystems. Washington, DC: Island Press.

    Google Scholar 

  • Ehrlén J, Eriksson O. 2000. Dispersal limitations and patch occupancy in forest herbs. Ecology 81:1667–74.

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Ruprecht D, Volkmar W, Werner W, Paulissen D. 1992. Zeigerwerte von pflanzen in Mitteleuropa. Scr Geobot 18:1–258.

    Google Scholar 

  • Ewald J. 2003. The calcareous riddle: why are there so many calciphilous species in the Central European flora? Folia Geobot 38:357–66.

    Article  Google Scholar 

  • Falkengren-Grerup U, Ten Brink DJ, Brunet J. 2006. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For Ecol Manag 225:74–81.

    Article  Google Scholar 

  • Flinn KM, Vellend M. 2005. Recovery of forest plant communities in post-agricultural landscapes. Front Ecol Environ 3:243–50.

    Article  Google Scholar 

  • Flinn KM, Vellend M, Marks PL. 2005. Environmental causes and consequences of forest clearance and agricultural abandonment in central New York, USA. J Biogeogr 32:439–52.

    Article  Google Scholar 

  • Foster DR, Swanson F, Aver J, Burke I, Borwaw N, Tilman D, Knapp A. 2003. The importance of land-use legacies to ecology and conservation. BioScience 53:77–88.

    Article  Google Scholar 

  • Fraterrigo JM, Turner MG, Pearson SM, Dixon P. 2005. Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol Monogr 75:215–30.

    Article  Google Scholar 

  • Goodale CL, Aber JD. 2001. The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecol Appl 11:253–67.

    Article  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R. 2007. 2007 Comparative plant ecology: a functional approach to common British species. 2nd edn. Dalbeattie: Castlepoint Press.

    Google Scholar 

  • Graae BJ, Sunde PB, Fritzbøger B. 2003. Vegetation and soil differences in ancient opposed to new forests. For Ecol Manag 177:179–90.

    Article  Google Scholar 

  • Grashof-Bokdam CJ, Geertsema W. 1998. The effect of isolation and history on colonization patterns of plant species in secondary woodland. J Biogeogr 25:837–46.

    Article  Google Scholar 

  • Grime JP. 2001. Plant strategies, vegetation processes, and ecosystem properties. 2nd edn. Chichester: Wiley.

    Google Scholar 

  • Hall JH, Trujillo J, Nakase D, Strawhacker C, Kruse-Peeples M, Schaafsma H, Briggs J. 2013. Legacies of prehistoric agricultural practices within plant and soil properties across an arid ecosystem. Ecosystems 16:1273–93.

    Article  CAS  Google Scholar 

  • Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell JC, Schmidt M, Fausto C, Franchetto B. 2003. Amazonia 1492: pristine forest or cultural parkland? Science 301:1710–14.

    Article  CAS  PubMed  Google Scholar 

  • Hejcman M, Karlík P, Ondráček J, Klír T. 2013. Short-term medieval settlement activities irreversibly changed forest soils and vegetation in central Europe. Ecosystems 16:652–63.

    Article  Google Scholar 

  • Hermy M, Stieperaere H. 1981. An indirect gradient analysis of the ecological relationships between ancient and recent riverine woodlands to the south of Bruges. Vegetatio 44:46–9.

    Article  Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE. 1999. An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22.

    Article  Google Scholar 

  • Holliday VT, Gartner WG. 2007. Methods of soil P analysis in archaeology. J Archaeol Sci 34:301–33.

    Article  Google Scholar 

  • Holling CS, Goldberg MA. 1981. Ecology and planning. In: Bates DG, Lee SH, Eds. Contemporary anthropology: an anthology. New York: Alfred Knopf. p 78–93.

    Google Scholar 

  • Honnay O, Hermy M, Coppin P. 1999. Impact of habitat quality on forest plant species colonization. For Ecol Manag 115:157–70.

    Article  Google Scholar 

  • Hunt R, Hogdson JH, Thompson K, Bungener P, Dunnett NP, Askew AP. 2004. A new practical tool for deriving a functional signature for herbaceous vegetation. Appl Veg Sci 7:163–70.

    Article  Google Scholar 

  • Ito S, Nakayama R, Buckley GP. 2004. Effects of previous land-use on plant species diversity in semi-natural and plantation forests in a warm-temperate region in southeastern Kyushu, Japan. For Ecol Manag 196:213–55.

    Article  Google Scholar 

  • Jim CY. 1998. Physical and chemical properties of a Hong Kong roadside soil in relation to urban tree growth. Urban Ecosyst 2:171–81.

    Article  Google Scholar 

  • Josefsson T, Hornberg G, Ostlund L. 2009. Long-term human impact and vegetation changes in a boreal forest reserve: implications for the use of protected areas as ecological references. Ecosystems 12:1017–36.

    Article  Google Scholar 

  • Koerner W, Dupouey JL, Dambrine E, Benoît M. 1997. Influence of past land use on the vegetation and soils of present day forest in the Vosges mountains, France. J Ecol 85:351–8.

    Article  Google Scholar 

  • Kristiansen SM. 2001. Present-day soil spatial distribution explained by prehistoric land-use: Podzol-Arenosol variation in an ancient woodland in Denmark. Geoderma 103:271–88.

    Article  Google Scholar 

  • Lambinon J, De Langhe JE, Delvosalle L, Duvigneaud J. 1992. Nouvelle flore de la Belgique, du Grand-Duché de Luxembourg, du Nord de la France et des régions voisines. Meise: éditions du patrimoine du Jardin botanique national de Belgique. p 1092.

    Google Scholar 

  • Lindborg R, Eriksson O. 2004. Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–5.

    Article  Google Scholar 

  • Lososovà Z, Chytry M, Kuhn I, Hajek O, Horakova V, Pysek P, Tichy L. 2006. Patterns of plant traits in annual vegetation of man-made habitats in central Europe. Perspect Plant Ecol Evol Syst 8:69–81.

    Article  Google Scholar 

  • McDonnell MJ, Pickett STA, Groffman P, Bohlen P, Pouyat RV, Zipperer WC, Parmelee RW, Carreiro MM, Medley K. 1997. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst 1:21–36.

    Article  Google Scholar 

  • Motzkin G, Foster DR, Allen A, Harrod J, Boone RD. 1996. Controlling site to evaluate history: vegetation patterns of a New England sand plain. Ecol Monogr 66:345–65.

    Article  Google Scholar 

  • Motzkin G, Wilson P, Foster DR, Allen A. 1999. Vegetation patterns in heterogeneous landscapes: the importance of history and environment. J Veg Sci 10:903–20.

    Article  Google Scholar 

  • Pärtel M. 2002. Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–6.

    Article  Google Scholar 

  • Peterken GF, Game M. 1984. Historical factors affecting the number and distribution of vascular plant-species in the woodlands of central Lincolnshire. J Ecol 72:155–82.

    Article  Google Scholar 

  • Plue J, Hermy M, Verheyen K, Thuillier P, Saguez R, Decocq G. 2008. Persistent changes in forest vegetation and seed bank 1,600 years after human occupation. Landsc Ecol 23:673–88.

    Article  Google Scholar 

  • Richter DD, Markewitz D, Wells CG, Allen HL, April R, Heine PR, Urrego B. 1994. Soil chemical change during three decades in an old-field loblolly pine (Pinus taeda L.) ecosystem. Ecology 75:1463–73.

    Article  Google Scholar 

  • Salisbury RB. 2012. Soil scapes and settlements: remote mapping of activity areas in unexcavated small farm-steads. Antiquity 86:178–90.

    Article  Google Scholar 

  • Swetnam TW, Allen CD, Betancourt JL. 1999. Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–206.

    Article  Google Scholar 

  • Ter Heerdt GNJ, Verweij GL, Bekker RM, Bakker JP. 1996. An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Funct Ecol 10:144–51.

    Article  Google Scholar 

  • van der Maarel E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–144.

    Article  Google Scholar 

  • Vanwalleghem T, Verheyen K, Hermy M, Poesen J, Deckers J. 2004. Legacies of Roman land-use in the present-day vegetation in Meerdaal Forest (Belgium). Belg J Bot 137:181–7.

    Google Scholar 

  • Verheyen K, Hermy M. 2001. The relative importance of dispersal limitation of vascular plants in secondary forest succession in Muizen forest, Belgium. J Ecol 89:829–40.

    Article  Google Scholar 

  • Verheyen K, Bossuyt B, Hermy M, Tack G. 1999. The land use history (1278–1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–28.

    Article  Google Scholar 

  • Verheyen K, Guntenspergen G, Biesbrouck B, Hermy M. 2003. An integrated analysis of the effects of past land use on forest herb colonization at the landscape scale. J Ecol 91:731–42.

    Article  Google Scholar 

  • Weisman A. 2007. The world without us. St: Martin’s Press.

    Google Scholar 

  • Willis KJ, Gillson L, Brncic TM. 2004. How “virgin” is virgin rainforest? Science 304:402–3.

    Article  CAS  PubMed  Google Scholar 

  • Windeballe BS, Svenning JC, Balslev H. 2004. The influence of past land-use on understory plant distribution in a near-natural deciduous forest in Denmark. Nord J Bot 23:69–81.

    Article  Google Scholar 

  • Wittig R. 2004. The origin and development of the urban flora of Central Europe. Urban Ecosyst 7:323–39.

    Article  Google Scholar 

  • Wulf M. 2004. Plant species richness of afforestations with different former use and habitat continuity. For Ecol Manag 195:191–204.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Philippe Racinet and Richard Jonvel who provide the location of the feudal mottes; Alix Vaissié, for her contribution to soil sample and data preparation; Robert Saguez and Manuella Catterou for their help in soil analysis processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Déborah Closset-Kopp.

Additional information

Author Contributions:

DCK and GD conceived and designed the study, performed the research, analyzed the data and wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Closset-Kopp, D., Decocq, G. Remnant Artificial Habitats as Biodiversity Islets into Forest Oceans. Ecosystems 18, 507–519 (2015). https://doi.org/10.1007/s10021-015-9843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-015-9843-3

Keywords

Navigation