Skip to main content
Log in

Functional Role of the Herbaceous Layer in Eastern Deciduous Forest Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The importance of the herbaceous layer in regulating ecosystem processes in deciduous forests is generally unknown. We use a manipulative study in a rich, mesophytic cove forest in the southern Appalachians to test the following hypotheses: (i) the herbaceous functional group (HFG) in mesophytic coves accelerates carbon and nutrient cycling, (ii) high litter quality input and rapid nutrient turnover associated with HFG will have a positive effect on overstory tree growth, and (iii) the HFG regulates tree regeneration with negative effects on seedling establishment due to competition for resources. We established treatment plots in a mesic, cove-hardwoods forest and removed the herbaceous flora (HR, removed twice per year) or added herbaceous organic material (OMA, once per year) for comparison to a no removal (NR) reference for a total of 14 years. The OMA treatment stimulated soil N-mineralization and increased litterfall mass and N content. OMA N-mineralization rates were more than two times greater than both the NR and HR treatments; however, we did not detect significant differences in soil CO2 efflux among treatments. Higher overstory litterfall mass and N in the OMA treatment plots indicated that overstory trees were benefiting from the enhanced soil N-mineralization. Higher overstory leaf mass and N suggests an important linkage between HR and aboveground net primary production even though this did not translate into greater tree basal area increment. We found an increase in regeneration of all tree species with HFG removal, and the response was particularly evident for Acer rubrum seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abrams MD. 2005. Prescribing fire in eastern oak forests: is time running out? North J Appl For 22:190–6.

    Google Scholar 

  • Alban DH. 1982. Effects of nutrient accumulation by aspen, spruce, and pine on soil properties. Soil Sci Soc Am J 46:853–61.

    Article  CAS  Google Scholar 

  • Albaugh TJ, Allen HL, Stape JL, Fox TR, Rubilar RA, Prince JW. 2012. Intra-annual nutrient flux in Pinus taeda. Tree Physiol 32:1237–58.

    Article  CAS  PubMed  Google Scholar 

  • Alexander HD, Arthur MA. 2010. Implications of a predicted shift from upland oaks to red maple on forest hydrology and nutrient availability. Can J For Res 40:716–26.

    Article  CAS  Google Scholar 

  • Allan E, Weisser WW, Fischer M, Schulze E-D, Weigelt A, Roscher C, Baade J, Barnard RL, BeBler H, Buchmann N, Ebeling A, Eisenhauer N, Engels C, Fergus AJF, Gleixner G, Gubsch M, Halle S, Klein AM, Kertscher I, Kuu A, Lange M, Le roux X, Meyer ST, Migunova VD, Milcu A, Niklaus PA, Oelmann Y, Pašalić E, Petermann JS, Poly F, Rottstock T, Sabias ACW, Scherber C, Scherer-Lorenzen M, Scheu S, Steinbeiss S, Schwichtenberg G, Temperton V, Tscharntke T, Voigt W, Wilcke W, Wirth C, Schmid B, Schmid B. 2013. A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173:223–37.

    Article  PubMed  Google Scholar 

  • Andreasson F, Påhlsson A-MB, Bergkvist B. 2012. Differences in soil organic matter, extractable nutrients, and acidity in European beech (Fagus sylvatica L.) forest soils related to the presence of ground flora. J For Res 17:333–42.

    Article  CAS  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–87.

    Article  Google Scholar 

  • Campoe OC, Stape JL, Albaugh TJ, Allen HL, Fox TR, Rubilar R, Binkley D. 2013. Fertilization and irrigation effects on tree level aboveground net primary production, light interception and light use efficiency in a loblolly pine plantation. For Ecol Manag 288:43–8.

    Article  Google Scholar 

  • Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzales A. 2011. The functional role of producer diversity in ecosystems. Am J Bot 98:572–92.

    Article  PubMed  Google Scholar 

  • Cattelino PJ, Becker CA, Fuller LG. 1986. Construction and installation of homemade dendrometer bands. North J Appl For 3:73–5.

    Google Scholar 

  • Clark JS, Bell DM, Kwit M, Stine A, Vierra B, Zhu K. 2012. Individual-scale inference to anticipate climate-change vulnerability of biodiversity. Philos Trans R Soc B 367:236–46.

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H. 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–80.

    Article  Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khosnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Deghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR. 2004. The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304.

    Article  Google Scholar 

  • Eisenhauer N, Yee K, Johnson EA, Maraun M, Parkinson D, Straube D, Scheu S. 2011. Positive relationship between herbaceous layer diversity and the performance of soil biota in a temperate forest. Soil Biol Biochem 43:462–5.

    Article  CAS  Google Scholar 

  • Elliott KJ, Swank WT. 2008. Long-term changes in forest composition and diversity following early logging (1919–1923) and the decline of American chestnut (Castanea dentata (Marshall) Borkh.). Plant Ecol 197:155–72.

    Article  Google Scholar 

  • Elliott KJ, Vose JM, Rankin D. 2014. Herbaceous species composition and richness of mesophytic cove forests in the southern Appalachians: synthesis and knowledge gaps. J Torrey Bot Soc 141:39–71.

    Article  Google Scholar 

  • Fekete I, Kotroczo Z, Varga C, Nagy PT, Varbiro G, Bowden RD, Toth JA, Lajtha K. 2014. Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biol Biochem 74:106–14.

    Article  CAS  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L. 2003. The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–43.

    Article  CAS  Google Scholar 

  • Ford CR, Elliott KJ, Clinton BD, Kloeppel BD, Vose JM. 2012. Changes in southern Appalachian riparian forest community structure and composition following eastern hemlock mortality. Oikos 121:523–36.

    Article  Google Scholar 

  • Fornara DA, Tilman D. 2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–22.

    Article  CAS  Google Scholar 

  • George LO, Bazzaz FA. 2014. The herbaceous layer as a filter determining spatial pattern in forest tree regeneration. In: Gilliam FS, Ed. The herbaceous layer in forests of Eastern North America. 2nd edn. New York: Oxford University Press. p 340–55.

    Google Scholar 

  • Gilliam FS. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57:845–58.

    Article  Google Scholar 

  • Gilliam FS, Ed. 2014. The herbaceous layer in forests of Eastern North America. 2nd edn. New York: Oxford University Press. 633

    Google Scholar 

  • Gilliam FS, Dick DA. 2010. Spatial heterogeneity of soil nutrients and plant species in herb-dominated communities of contrasting land use. Plant Ecol 209:83–94.

    Article  Google Scholar 

  • Gleason HA, Cronquist A. 1991. Manual of vascular plants of northeastern United States and adjacent Canada. 2nd edn. Bronx (NY): The New York Botanical Garden. p 910.

    Google Scholar 

  • Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kast E, Arnold C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clément J-C. 2013. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57.

    Article  Google Scholar 

  • Holub SM, Lajtha K, Spears JDH, Tόth JA, Crow SE, Caldwell BA, Papp M, Nagy PT. 2005. Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe. For Ecol Manag 214:320–30.

    Article  Google Scholar 

  • Hooper D, Vitousek PM. 1997. The effects of plant composition and diversity on ecosystem processes. Science 277:1302–5.

    Article  CAS  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–8.

    CAS  PubMed  Google Scholar 

  • Horsley SB. 1993. Mechanisms of interference between hayscented fern and black cherry. Can J For Res 23:2059–69.

    Article  Google Scholar 

  • Huston MA. 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110:449–60.

    Article  Google Scholar 

  • Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M. 2011. High plant diversity is needed to maintain ecosystem services. Nature 477:199–202.

    Article  CAS  PubMed  Google Scholar 

  • Jenny H, Arkley RJ, Schultz AM. 1969. The pygmy forest podsol ecosystem and its dune associates of the Mendocino coast. Madroño 20:60–74.

    Google Scholar 

  • Keiser AD, Knoepp JD, Bradford MA. 2013. Microbial communities may modify how litter quality affects potential decomposition rates as tree species migrate. Plant Soil 372:167–76.

    Article  CAS  Google Scholar 

  • Kirkman LK, Brown CL, Leopold DJ. 2007. Native trees of the Southeast: an identification guide. Portland (OR): Timber Press. p 370.

    Google Scholar 

  • Knoepp JD, Swank WT. 2002. Using soil temperature and moisture to predict forest soil nitrogen mineralization. Biol Fertil Soils 36:177–82.

    Article  CAS  Google Scholar 

  • Knoepp JD, Vose JM. 2007. Regulation of N mineralization and nitrification in southern Appalachian ecosystems: separating the relative importance of biotic vs. abiotic controls. Pedobiologia 51:87–97.

    Article  Google Scholar 

  • Knoepp JD, Vose JM, Swank WT. 2008. Nitrogen deposition and cycling across an elevation and vegetation gradient in southern Appalachian forests. Int J Environ Stud 65:391–410.

    Article  Google Scholar 

  • Knoepp JD, Vose JM, Clinton BD, Hunter MD. 2011. Hemlock infestation and mortality: impacts on nutrient pools and cycling in Appalachian forests. Soil Sci Soc Am J 75:1935–45.

    Article  CAS  Google Scholar 

  • Kuzyakov Y. 2010. Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–71.

    Article  CAS  Google Scholar 

  • Lajtha K, Townsend KL, Kramer MG, Swanston C, Bowden RD, Nadelhoffer K. 2014. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems. Biogeochemistry 119:341–60.

    Article  CAS  Google Scholar 

  • Laliberté E, Grace JB, Huston MA, Lambers H, François PT, Turner BL, Wardle DA. 2013. How does pedogenesis drive plant diversity? Trends Ecol Evol 28:331–40.

    Article  PubMed  Google Scholar 

  • Laseter SH, Ford CR, Vose JM, Swift LW Jr. 2012. Long-term temperature and precipitation trends at the Coweeta Hydrologic Laboratory, Otto, North Carolina, USA. Hydrol Res 43:890–901.

    Article  Google Scholar 

  • Laughlin DC. 2011. Nitrification is linked to dominant leaf traits rather than functional diversity. J Ecol 99:1091–9.

    Article  Google Scholar 

  • LeBauer DS, Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–9.

    Article  PubMed  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD. 1996. SAS system for mixed models. Cary (NC): SAS Institute, Inc. p 633.

    Google Scholar 

  • Lovett GM, Weathers KC, Arthur MA, Schultz JC. 2004. Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308.

    Article  CAS  Google Scholar 

  • Lovett GM, Arthur MA, Weathers KC, Fitzhugh RD, Templer PH. 2013. Nitrogen addition increases carbon storage in soils, but not in trees, in an eastern U.S. deciduous forest. Ecosystems 16:980–1001.

    Article  CAS  Google Scholar 

  • MacArthur RH, Wilson EO. 1967. The theory of island biogeography. Princeton (NJ): Princeton University Press. p 205.

    Google Scholar 

  • Margalef R. 1968. Perspectives in ecological theory. Chicago (IL): Chicago University Press. p 111.

    Google Scholar 

  • Martin JG, Kloeppel BD, Schaefer TL, Kimbler DL, McNulty SG. 1998. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Can J For Res 28:1648–59.

    Article  Google Scholar 

  • May RM. 1973. Stability and complexity in model ecosystems. Princeton (NJ): Princeton University Press. p 235.

    Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ. 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–98.

    Article  Google Scholar 

  • Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR. 2013. A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–77.

    Article  PubMed  Google Scholar 

  • Muller RN. 2014. Nutrient relations of the herbaceous layer in deciduous forest ecosystems. In: Gilliam FS, Ed. The herbaceous layer in forests of Eastern North America. 2nd edn. New York: Oxford University Press. p 13–34.

    Google Scholar 

  • Nadelhoffer K, Boone R, Bowden RD, Canary J, Kaye J, Micks P, Ricca A, McDowell W, Aitkenhead J. 2004. The DIRT experiment. In: Foster DR, Aber DJ, Eds. Forests in time: the environmental consequences of 1000 years of change in New England. New Haven (CT): Yale University Press. p 300–15.

    Google Scholar 

  • Nadrowski K, Wirth C, Scherer-Lorenzen M. 2010. Is forest diversity driving ecosystem function and service? Curr Opin Environ Sustain 2:75–9.

    Article  Google Scholar 

  • Norris MD, Avis PG, Reich PB, Hobbie SE. 2013. Positive feedbacks between decomposition and soil nitrogen availability along fertility gradients. Plant Soil 367:347–61.

    Article  CAS  Google Scholar 

  • Nuckolls AE, Wurzburger N, Ford CR, Hendrick RL, Vose JM, Kloeppel BD. 2009. Hemlock declines rapidly with hemlock woolly adelgid infestation: impacts on the carbon cycle of southern Appalachian forests. Ecosystems 12:179–90.

    Article  CAS  Google Scholar 

  • Pillar VD, Blanco CC, Müller SC, Sosinski EE, Joner F, Duarte LDS. 2013. Functional redundancy and stability in plant communities. J Veg Sci 24:963–74.

    Article  Google Scholar 

  • Polley HW, Isbell FI, Wilsey BJ. 2013. Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity. Oikos 122:1275–82.

    Article  Google Scholar 

  • Prévost-Bouré NC, Soudani K, Damesin C, Berveiller D, Lata J-C, Dufrêne E. 2010. Increase in aboveground fresh litter quantity over-stimulates soil respiration in a temperate deciduous forest. Appl Soil Ecol 46:26–34.

    Article  Google Scholar 

  • Roberts MR. 2004. Response of the herbaceous layer to natural disturbance in North American forests. Can J Bot 82:1273–83.

    Article  Google Scholar 

  • Rothe A, Binkley D. 2001. Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–70.

    Article  Google Scholar 

  • SAS Institute Inc. 2002–2013. SAS/STAT guide for personal computers, version 9.4. Cary, NC.

  • Schafale MP, Weakley AS. 1990. Classification of the natural communities of North Carolina third approximation. Raleigh (NC): North Carolina Natural Heritage Program. p 326.

    Google Scholar 

  • Thomas DJ. 1996. Soil survey of Macon County, North Carolina. Washington (DC): USDA Natural Resources Conservation Service. p 322.

    Google Scholar 

  • USEPA. 1983a. Methods for chemical analysis of water and waste. Determination of nitrogen as ammonia, Method 350.1. Environmental Monitoring and Support Lab, US Environmental Protection Agency, Cincinnati, OH.

  • USEPA. 1983b. Methods for chemical analysis of water and waste. Determination of nitrite/nitrate by automated cadmium reduction, Method 353.2. Environmental Monitoring and Support Lab, US Environmental Protection Agency, Cincinnati, OH.

  • Valentine HT, Mäkelä K. 2012. Modeling forest stand dynamics from optimal balances of carbon and nitrogen. New Phytol 194:961–71.

    Article  CAS  PubMed  Google Scholar 

  • Vos VCA, van Ruijven J, Berg MP, Peeters ETHM, Berendse F. 2013. Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia 173:269–80.

    Article  PubMed  Google Scholar 

  • Vose JM, Bolstad PV. 2007. Biotic and abiotic factors regulating forest floor CO2 flux across a range of forest age classes in the southern Appalachians. Pedobiologia 50:577–87.

    Article  Google Scholar 

  • Vose JM, Wear DN, Mayfield AEIII, Nelson D. 2013. Hemlock woolly adelgid in the southern Appalachians: control strategies, ecological impacts, and potential management responses. For Ecol Manag 291:209–19.

    Article  Google Scholar 

  • Wardle DA. 1997. Biodiversity and ecosystem properties—response. Science 278:1867–9.

    CAS  Google Scholar 

  • Whigham DF. 2004. Ecology of woodland herbs in temperate deciduous forests. Annu Rev Ecol Evol Syst 35:583–621.

    Article  Google Scholar 

  • Wurzburger N, Hendrick RL. 2009. Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest. J Ecol 97:528–36.

    Article  CAS  Google Scholar 

  • Yildiz O, Cromack K Jr, Radosevich SR, Matinez-Chersa MA, Baham JE. 2011. Comparison of 5th- and 14th-year Douglas-fir and understory vegetation responses to selective vegetation removal. For Ecol Manag 262:586–97.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Patsy Clinton and Chris Sobek for assistance in field sampling and Cindi Brown and Carol Harper for chemical analyses of plant and soil samples. We also thank Drs. Chris Oishi, Jennifer Fraterrigo, and Chelcy Miniat and two anonymous reviewers for their helpful comments on this manuscript. This research was funded by USDA Forest Service, Southern Research Station, Coweeta Hydrologic Laboratory, and the Coweeta LTER Project funded by National Science Foundation grants DEB-9632854 and DEB-0218001. The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S Department of Agriculture of any product or service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine J. Elliott.

Additional information

Author contributions

KJE and JMV conceived the study, designed the experiment, and wrote the paper. KJE performed the analyses. KJE, JMV, JDK, BDC, and BDK performed the research. KJE, JMV, and JDK contributed to discussions and editing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, K.J., Vose, J.M., Knoepp, J.D. et al. Functional Role of the Herbaceous Layer in Eastern Deciduous Forest Ecosystems. Ecosystems 18, 221–236 (2015). https://doi.org/10.1007/s10021-014-9825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9825-x

Keywords

Navigation