Skip to main content

Advertisement

Log in

Whole-Lake CO2 Dynamics in Response to Storm Events in Two Morphologically Different Lakes

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

In lentic systems, hydrology can be dramatically altered after storm events, potentially modifying the carbon budget. In particular, rapid increases in the surface water carbon dioxide partial pressure (pCO2) have been observed following such events. Several processes may explain these shifts in lake CO2 dynamics, including vertical mixing, increases in metabolism, and increases in external loading. To evaluate the relative importance of these various processes, we reconstructed the whole-lake daily CO2 budget using concurrent estimates of lake metabolism and daily CO2 mass balance budgets in two lakes with distinct morphometries located in Québec, Canada. We found that storm events caused variable, but significant, changes in whole-lake CO2 mass. Such events influenced CO2 dynamics indirectly by inducing shifts in lake metabolism, and directly by importing CO2 by the inflowing storm waters. Storm intensity (in terms of total amount of precipitation) influences the balance between these two processes, but the final outcome depends on lake morphometry. Our results suggest that when storms are intense enough to drive lake water renewal rate beyond 1% day−1, external CO2 loadings became the dominant process, overwhelming internal CO2 production. Lakes with slower hydrological turnover, however, are more susceptible to internal regulation and may simply re-allocate CO2 from the hypolimnion to the epilimnion following a storm event. Our results thus suggest that this tightening of the watershed-lake-atmosphere linkage by climatic events is strongly modulated by lake morphometry. These features should be considered when predicting the impact of future climate change on regional C budgets and emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Åberg J, Jansson M, Jonsson A. 2010. Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO2 in a boreal lake. J Geophys Res 115:G02024.

    Google Scholar 

  • Algesten G, Sobek S, Bergström A-K, Ågren A, Tranvik LJ, Jansson M. 2004. Role of lakes for organic carbon cycling in the boreal zone. Glob Change Biol 10:141–7.

    Article  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nat Geosci 2:598–600.

    Article  CAS  Google Scholar 

  • Brothers SM, Prairie YT, del Giorgio PA. 2012. Benthic and pelagic sources of carbon dioxide in boreal lakes and a young reservoir (Eastmain-1) in eastern Canada. Glob Biogeochem Cycles 26:GB1002. doi:10.1029/2011GB004074.

    Article  Google Scholar 

  • Buffam I, Galloway JN, Blum LK, Mcglathery KJ. 2008. A stormflow/baseflow comparison of dissolved organic matter concentrations and bioavailability in an Appalachian stream. Biogeochemistry 53:269–306.

    Article  Google Scholar 

  • Campeau A, del Giorgio PA. 2013. Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob Change Biol:1–14.

  • Cole JJ, Caraco NF, Kling GW, Kratz TK. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–70.

    Article  CAS  PubMed  Google Scholar 

  • Cole JJ, Caraco NF. 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–56.

    Article  CAS  Google Scholar 

  • Cole JJ, Pace ML, Carpenter SR, Kitchell JF. 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr 45:1718–30.

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–85.

    Article  Google Scholar 

  • Cole JJ, Prairie YT. 2009. Dissolved CO2. In: Likens GE, Ed. Dissolved CO2, Vol. 2. Oxford: Elsevier. p 30–4.

    Google Scholar 

  • Coloso JJ, Cole JJ, Pace ML. 2011. Difficulty in discerning drivers of lake ecosystem metabolism with high-frequency data. Ecosystems 14:935–48.

    Article  Google Scholar 

  • Den Heyer C, Kalff J. 1998. Organic matter mineralization rates in sediments: a within-and among-lake study. Limnol Oceanogr 43:695–705.

    Article  Google Scholar 

  • Dhillon GS, Inamdar S. 2013. Extreme storms and changes in particulate and dissolved organic carbon in runoff: entering uncharted waters? Geophy Res Lett 40:1322–7. doi:10.1002/grl.50306.

    Article  CAS  Google Scholar 

  • Einola E, Rantakari M, Kankaala P, Kortelainen P, Ojala A, Pajunen H, Mäkelä S, Arvola L. 2011. Carbon pools and fluxes in a chain of five boreal lakes: a dry and wet year comparison. J Geophys Res 116:G03009.

    Google Scholar 

  • Elberling B, Ladegaard-Pedersen P. 2005. Subsurface CO2 dynamics in temperate beech and spruce forest stands. Biogeochemistry 75:479–506.

    Article  CAS  Google Scholar 

  • Hanson P, Bade D, Carpenter SR, Kratz TK. 2003. Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:1112–19.

    Article  CAS  Google Scholar 

  • Hanson P, Carpenter S, Kimura N. 2008. Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. Limnol Oceanogr 6:454–65.

    Article  CAS  Google Scholar 

  • Houser J, Bade D, Cole J, Pace M. 2003. The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and photosynthetic reduction. Biogeochemistry 64:247–69.

    Article  CAS  Google Scholar 

  • Humborg C, Mörth C-M, Sundbom M, Borg H, Blenckner T, Giesler R, Ittekkot V. 2010. CO2 supersaturation along the aquatic conduit in Swedish watersheds as constrained by terrestrial respiration, aquatic respiration and weathering. Glob Change Biol 16:1966–78.

    Article  Google Scholar 

  • Huotari J, Ojala A, Peltomaa E, Pumpanen J, Hari P, Vesala T. 2009. Temporal variations in surface water CO2 concentration in a boreal humic lake based on high-frequency measurements. Boreal Environ Res 14:48–60.

    CAS  Google Scholar 

  • Jähne B, Münnich KO, Bösinger R, Dutzi A, Huber W, Libner P. 1987. On the parameters influencing air–water gas exchange. J Geophys Res 92:1937–49.

    Article  Google Scholar 

  • Jennings E, Jones S, Arvola L, Staehr PA, Gaiser E, Weathers KC, Weyhenmeyer GA, Chiu C-Y, de Eyto E. 2012. Effects of weather-related episodic events in lakes: an analysis based on high-frequency data. Freshw Biol 57:589–601.

    Article  CAS  Google Scholar 

  • Jones SE, Kratz TK, Chiu C-Y, McMahon KD. 2009. Influence of typhoons on annual CO2 flux from a subtropical, humic lake. Glob Change Biol 15:243–54.

    Article  Google Scholar 

  • Karlsson J, Jansson M, Jonsson A. 2007. Respiration of allochthonous organic carbon in unproductive forest lakes determined by the Keeling plot method. Limnol Oceanogr 52:603–8.

    Article  CAS  Google Scholar 

  • Kelly CA, Fee E, Ramlal PS, Rudd JWM, Hesslein RH, Anema C, Schindler EU. 2001. Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol Oceanogr 46:1054–64.

    Article  CAS  Google Scholar 

  • Klug JL, Richardson DC, Ewing a H, Hargreaves BR, Samal NR, Vachon D, Pierson DC, Lindsey AM, O’Donnell DM, Effler SW, Weathers KC. 2012. Ecosystem effects of a tropical cyclone on a network of lakes in northeastern North America. Environ Sci Technol 46:11693–701.

    Article  CAS  PubMed  Google Scholar 

  • López Bellido J, Tulonen T, Kankaala P, Ojala A. 2009. CO2 and CH4 fluxes during spring and autumn mixing periods in a boreal lake (Pääjärvi, southern Finland). J Geophys Res 114:G04007.

    Google Scholar 

  • Maberly SC, Barker P a, Stott AW, De Ville MM. 2012. Catchment productivity controls CO2 emissions from lakes. Nat Clim Change 3:391–4.

    Article  Google Scholar 

  • McCallister SL, del Giorgio PA. 2008. Direct measurement of the δ13C signature of carbon respired by bacteria in lakes: linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnol Oceanogr 53:1204–16.

    Article  CAS  Google Scholar 

  • McDonald CP, Stets EG, Striegl RG, Butman D. 2013. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. Glob Biogeochem Cycles 27:1–11.

    Article  Google Scholar 

  • McNair JN, Gereaux LC, Weinke AD, Sesselmann MR, Kendall ST, Biddanda BA. 2013. New methods for estimating components of lake metabolism based on free-water dissolved-oxygen dynamics. Ecol Model 263:251–63.

    Article  CAS  Google Scholar 

  • Meehl GA, Arblaster JM, Tebaldi C. 2005. Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys Res Lett 32:L18719. doi:10.1029/2005GL023680.

    Article  Google Scholar 

  • Ojala A, López Bellido J, Tulonen T, Kankaala P, Huotari J. 2011. Carbon gas fluxes from a brown-water and a clear-water lake in the boreal zone during a summer with extreme rain events. Limnol Oceanogr 56:61–76.

    Article  CAS  Google Scholar 

  • Öquist MG, Wallin M, Seibert J, Bishop K, Laudon H. 2009. Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream. Environ Sci Technol 43:7364–9.

    Article  PubMed  Google Scholar 

  • Pumpanen J, Ilvesniemi H, Kulmala L, Siivola E, Laakso H, Kolari P, Helenelund C, Laakso M, Uusimaa M, Hari P. 2008. Respiration in Boreal forest soil as determined from carbon dioxide concentration profile. Soil Sci Soc Am J 72:1187.

    Article  CAS  Google Scholar 

  • Rantakari M, Kortelainen P. 2005. Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Glob Change Biol 11:1368–80.

    Article  Google Scholar 

  • Rasilo T, Ojala A, Huotari J, Pumpanen J. 2012. Rain induced changes in carbon dioxide concentrations in the soil–lake–brook continuum of a boreal forested catchment. Vadose Zone J 11. doi:10.2136/vzj2011.0039.

  • Raymond P a, Saiers JE. 2010. Event controlled DOC export from forested watersheds. Biogeochemistry 100:197–209.

    Article  Google Scholar 

  • Read JS, Hamilton DP, Desai AR, Rose KC, MacIntyre S, Lenters JD, Smyth RL, Hanson PC, Cole JJ, Staehr PA, Rusak JA, Pierson DC, Brookes JD, Laas A, Wu CH. 2012. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys Res Lett 39:L09405. doi:10.1029/2012GL051886.

    Article  Google Scholar 

  • Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow LA, Kroiss R, Wu CH, Gaiser E. 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ Model Softw 26:1325–36.

  • Riera J, Schindler J, Kratz T. 1999. Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, USA. Can J Fish Aquat Sci 274:265–74.

    Article  Google Scholar 

  • Roehm CL, Prairie YT, del Giorgio PA. 2009. The pCO2 dynamics in lakes in the boreal region of northern Québec, Canada. Global Biogeochemical Cycles 23:GB3013. doi:10.1029/2008GB003297.

    Article  Google Scholar 

  • Sadro S, Melack JM, MacIntyre S. 2011. Depth-integrated estimates of ecosystem metabolism in a high-elevation lake (Emerald Lake, Sierra Nevada, California). Limnol Oceanogr 56:1764–80.

    Article  Google Scholar 

  • Sadro S, Melack JM. 2012. The effect of an extreme rain event on the biogeochemistry and ecosystem metabolism of an oligotrophic high-elevation lake. Arct Antarct Alp Res 44:222–31.

    Article  Google Scholar 

  • Sand-Jensen K, Staehr PA. 2011. CO2 dynamics along Danish lowland streams: water–air gradients, piston velocities and evasion rates. Biogeochemistry 111:615–28.

    Article  Google Scholar 

  • Sobek S, Algesten G, Bergström A-K, Jansson M, Tranvik LJ. 2003. The catchment and climate regulation of pCO2 in boreal lakes. Glob Chang Biol 9:630–41.

  • Solomon CT, Bruesewitz DA, Richardson DC, Rose KC, Van de Bogert MC, Hanson PC, Kratz TK, Larget B, Adrian R, Leroux B, Chiu C, Hamilton DP, Gaiser EE, Hendricks S, Istva V, Laas A, Donnell DMO, Pace ML, Ryder E, Staehr PA, Vanni MJ, Weathers KC, Zhu G. 2013. Ecosystem respiration: drivers of daily variability and background respiration in lakes around the globe. Limnol Oceanogr 58:849–66.

    CAS  Google Scholar 

  • Staehr PA, Baastrup-Spohr L, Sand-Jensen K, Stedmon C. 2011. Lake metabolism scales with lake morphometry and catchment conditions. Aquat Sci 74:155–69.

    Article  Google Scholar 

  • Staehr PA, Bade D, Van DeBogert MC, Koch GR, Williamson C, Hanson P, Cole JJ, Kratz T. 2010. Lake metabolism and the diel oxygen technique: state of the science. Limnol Oceanogr 8:628–44.

    Article  CAS  Google Scholar 

  • Staehr PA, Christensen JPA, Batt RD, Read JS. 2012. Ecosystem metabolism in a stratified lake. Limnol Oceanogr 57:1317–30.

    Article  CAS  Google Scholar 

  • Staehr PA, Sand-Jensen K. 2013. Temporal dynamics and regulation of lake metabolism. Limnol Oceanogr 52:108–20.

    Article  Google Scholar 

  • Striegl R, Michmerhuizen C. 1998. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol Oceanogr 43:1519–29.

    Article  CAS  Google Scholar 

  • Teodoru CR, Del Giorgio PA, Prairie YT, Camire M. 2009. Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada. Glob Biogeochem Cycles 23:GB2012. doi:10.1029/2008GB003404.

    Article  Google Scholar 

  • Tranvik L, Downing J, Cotner J. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314.

    Article  CAS  Google Scholar 

  • Tsai J-W, Kratz TK, Hanson PC, Wu J-T, Chang WYB, Arzberger PW, Lin B-S, Lin F-P, Chou H-M, Chiu C-Y. 2008. Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lake. Freshw Biol 53:1929–41.

    Article  CAS  Google Scholar 

  • Vachon D, Prairie YT. 2013. The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes. Can J Fish Aquat Sci 70:1757–64.

    Article  Google Scholar 

  • van de Bogert MC, Carpenter SR, Cole JJ, Pace ML. 2007. Assessing pelagic and benthic metabolism using free water measurements. Limnol Oceanogr 5:145–55.

    Article  Google Scholar 

  • Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–82.

    Article  Google Scholar 

  • Wilson HF, Saiers JE, Raymond PA, Sobczak WV. 2013. Hydrologic drivers and seasonality of dissolved organic carbon concentration, nitrogen content, bioavailability, and export in a forested New England Stream. Ecosystems 16:604–16.

    Article  CAS  Google Scholar 

  • Worrall F, Burt T, Adamson J. 2005. Fluxes of dissolved carbon dioxide and inorganic carbon from an upland peat catchment: implications for soil respiration. Biogeochemistry 73:515–39.

    Article  Google Scholar 

  • Yin JH. 2005. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Alice Parkes for her dedication to the automated systems, especially in Lac Croche. Mathieu Dumais and Jean-Philippe Desindes for field and laboratory assistance. We also thank Jean-François Lapierre for helpful advice and discussions, Adam Heathcote, Shoji Thottathil and two anonymous reviewers for useful comments on previous versions of the manuscript, and HSC for unwavering guidance. This project was part of the large-scale research program of the Industrial Research Chair in Carbon Biogeochemistry in Boreal Aquatic Systems (CarBBAS), co-funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Hydro-Québec to PDG. NSERC doctoral scholarship and UQAM-FARE scholarship was also attributed to DV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Vachon.

Additional information

Author Contributions

Both authors designed the study and wrote the paper. DV performed research and analyzed data.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vachon, D., del Giorgio, P.A. Whole-Lake CO2 Dynamics in Response to Storm Events in Two Morphologically Different Lakes. Ecosystems 17, 1338–1353 (2014). https://doi.org/10.1007/s10021-014-9799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9799-8

Keywords

Navigation