Skip to main content

Advertisement

Log in

Emerging glioneuronal and neuronal tumors: case-based review

  • Review Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Glioneuronal and neuronal tumors (GNTs) are rare heterogeneous central nervous system tumors characterized by slow growth and favorable outcomes, but are often associated with diagnostic difficulties. A thorough analysis of three rare and recently recognized GNTs was performed in the context of clinicopathological features and molecular genetic characterization. The current spinal diffuse leptomeningeal glioneuronal tumor (DLGNT) was characterized with oligodendroglioma-like tumor with chromosome 1p/19q codeletion without IDH mutations and KIAA1549:BRAF fusion. The current occipital multinodular and vacuolating neuronal tumor (MVNT) was characteristic of the variable-sized vague nodules consisted of gangliocytic tumor cells with intracytoplasmic and pericellular vacuolation and the next-generation sequencing (NGS) revealed MAP2K1 p.Q56_V60del. A diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters (DGONC) of the amygdala was characterized by oligodendroglia-like cells and nuclear clusters, and monosomy 14. From the current cases and literature review, we found that DLGNT commonly occurs in the spinal cord and can make mass and more commonly have KIAA1549:BRAF fusion; MVNT is a neoplasm rather than malformation and MAP2K1 deletion is one of the hallmarks of this tumor; although DGONC may require a methylation profile, we can reach a diagnosis through its unique histology, monosomy 14, and exclusion diagnosis without a methylation profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials (data transparency)

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Abbreviations

cIMPACT-NOW:

The Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy

CNS:

Central nervous system

GFAP:

Glial fibrillary acidic protein

DGONC:

Diffuse glioneuronal tumor with oligodendroglioma-like cells and nuclear clusters

DLGNT:

Diffuse leptomeningeal glioneuronal tumor

DNET:

Dysembryoplastic neuroepithelial tumor

FIRST-brain tumor-targeted gene panel:

Friendly Integrated Research-based Smart Trustworthy

GNT:

Glioneuronal and neuronal tumor

MVNT:

Multinodular and vacuolating neuroepithelial tumor

WHO:

World Health Organization

References

  1. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  2. Cho HJ, Myung JK, Kim H et al (2015) Primary diffuse leptomeningeal glioneuronal tumors. Brain Tumor Pathol 32:49–55. https://doi.org/10.1007/s10014-014-0187-z

    Article  PubMed  Google Scholar 

  3. Choi E, Kim SI, Won JK et al (2019) Clinicopathological and molecular analysis of multinodular and vacuolating neuronal tumors of the cerebrum. Hum Pathol 86:203–212. https://doi.org/10.1016/j.humpath.2018.11.028

    Article  CAS  PubMed  Google Scholar 

  4. Komori T (2021) The molecular framework of pediatric-type diffuse gliomas: shifting toward the revision of the WHO classification of tumors of the central nervous system. Brain Tumor Pathol 38:1–3. https://doi.org/10.1007/s10014-020-00392-w

    Article  PubMed  Google Scholar 

  5. de Blank P, Fouladi M, Huse JT (2020) Molecular markers and targeted therapy in pediatric low-grade glioma. J Neurooncol 150:5–15. https://doi.org/10.1007/s11060-020-03529-1

    Article  PubMed  Google Scholar 

  6. Saez-Alegre M, Saceda Gutierrez JM, Utrilla Contreras C et al (2021) Diffuse leptomeningeal glioneuronal tumour: where to biopsy? Case report and literature review. Childs Nerv Syst 37:2405–2408. https://doi.org/10.1007/s00381-020-04955-2

    Article  PubMed  Google Scholar 

  7. Perez E, Capper D (2020) Invited Review: DNA methylation-based classification of paediatric brain tumours. Neuropathol Appl Neurobiol 46:28–47. https://doi.org/10.1111/nan.12598

    Article  CAS  PubMed  Google Scholar 

  8. Capper D, Jones DTW, Sill M et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555:469–474. https://doi.org/10.1038/nature26000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurozumi K, Nakano Y, Ishida J et al (2019) High-grade glioneuronal tumor with an ARHGEF2-NTRK1 fusion gene. Brain Tumor Pathol 36:121–128. https://doi.org/10.1007/s10014-019-00345-y

    Article  CAS  PubMed  Google Scholar 

  10. Siegfried A, Rousseau A, Maurage CA et al (2019) EWSR1-PATZ1 gene fusion may define a new glioneuronal tumor entity. Brain Pathol 29:53–62. https://doi.org/10.1111/bpa.12619

    Article  CAS  PubMed  Google Scholar 

  11. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23:1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  Google Scholar 

  12. Louis DN, Wesseling P, Aldape K et al (2020) cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 30:844–856. https://doi.org/10.1111/bpa.12832

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deng MY, Sill M, Sturm D et al (2020) Diffuse glioneuronal tumour with oligodendroglioma-like features and nuclear clusters (DGONC)—a molecularly defined glioneuronal CNS tumour class displaying recurrent monosomy 14. Neuropathol Appl Neurobiol 46:422–430. https://doi.org/10.1111/nan.12590

    Article  CAS  PubMed  Google Scholar 

  14. Pickles JC, Mankad K, Aizpurua M et al (2021) A case series of diffuse glioneuronal tumours with oligodendroglioma-like features and nuclear clusters (DGONC). Neuropathol Appl Neurobiol 47:464–467. https://doi.org/10.1111/nan.12680

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee Y, Koh J, Kim SI et al (2017) The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas. Acta Neuropathol Commun 5:62. https://doi.org/10.1186/s40478-017-0465-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim KY, Won JK, Park CK et al (2021) H3 G34-mutant high-grade glioma. Brain Tumor Pathol 38:4–13. https://doi.org/10.1007/s10014-020-00378-8

    Article  CAS  PubMed  Google Scholar 

  17. Gardiman MP, Fassan M, Orvieto E et al (2010) Diffuse leptomeningeal glioneuronal tumors: a new entity? Brain Pathol 20:361–366. https://doi.org/10.1111/j.1750-3639.2009.00285.x

    Article  PubMed  Google Scholar 

  18. Deng MY, Sill M, Chiang J et al (2018) Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathol 136:239–253. https://doi.org/10.1007/s00401-018-1865-4

    Article  CAS  PubMed  Google Scholar 

  19. Beck DJK, Russel DS (1942) Oligodendrogliomatosis of the cerebrospinal pathway. Brain 65:352–372. https://doi.org/10.1093/brain/65.4.352

    Article  Google Scholar 

  20. Yamamoto T, Komori T, Shibata N et al (1996) Multifocal neurocytoma/gangliocytoma with extensive leptomeningeal dissemination in the brain and spinal cord. Am J Surg Pathol 20:363–370. https://doi.org/10.1097/00000478-199603000-00014

    Article  CAS  PubMed  Google Scholar 

  21. Lakhani DA, Mankad K, Chhabda S et al (2020) Diffuse leptomeningeal glioneuronal tumor of childhood. AJNR Am J Neuroradiol 41:2155–2159. https://doi.org/10.3174/ajnr.A6737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abongwa C, Cotter J, Tamrazi B et al (2020) Primary diffuse leptomeningeal glioneuronal tumors of the central nervous system: report of three cases and review of literature. Pediatr Hematol Oncol 37:248–258. https://doi.org/10.1080/08880018.2019.1711270

    Article  PubMed  Google Scholar 

  23. Rodriguez FJ, Perry A, Rosenblum MK et al (2012) Disseminated oligodendroglial-like leptomeningeal tumor of childhood: a distinctive clinicopathologic entity. Acta Neuropathol 124:627–641. https://doi.org/10.1007/s00401-012-1037-x

    Article  PubMed  Google Scholar 

  24. Dodgshun AJ, SantaCruz N, Hwang J et al (2016) Disseminated glioneuronal tumors occurring in childhood: treatment outcomes and BRAF alterations including V600E mutation. J Neurooncol 128:293–302. https://doi.org/10.1007/s11060-016-2109-x

    Article  CAS  PubMed  Google Scholar 

  25. Kang JH, Buckley AF, Nagpal S et al (2018) A diffuse leptomeningeal glioneuronal tumor without diffuse leptomeningeal involvement: detailed molecular and clinical characterization. J Neuropathol Exp Neurol 77:751–756. https://doi.org/10.1093/jnen/nly053

    Article  PubMed  Google Scholar 

  26. Lyle MR, Dolia JN, Fratkin J et al (2015) Newly identified characteristics and suggestions for diagnosis and treatment of diffuse leptomeningeal glioneuronal/neuroepithelial tumors: a case report and review of the literature. Child Neurol Open 2:1-7. https://doi.org/10.1177/2329048X14567531

    Article  Google Scholar 

  27. Tiwari S, Yadav T, Pamnani J et al (2020) Diffuse leptomeningeal glioneuronal tumor: a unique leptomeningeal tumor entity. World Neurosurg 135:297–300. https://doi.org/10.1016/j.wneu.2019.12.119

    Article  PubMed  Google Scholar 

  28. Lee JK, Ko HC, Choi JG et al (2018) A case of diffuse leptomeningeal glioneuronal tumor misdiagnosed as chronic tuberculous meningitis without brain biopsy. Case Rep Neurol Med 2018:1391943. https://doi.org/10.1155/2018/1391943

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yamasaki T, Sakai N, Shinmura K et al (2018) Anaplastic changes of diffuse leptomeningeal glioneuronal tumor with polar spongioblastoma pattern. Brain Tumor Pathol 35:209–216. https://doi.org/10.1007/s10014-018-0326-z

    Article  PubMed  Google Scholar 

  30. Schwetye KE, Kansagra AP, McEachern J et al (2017) Unusual high-grade features in pediatric diffuse leptomeningeal glioneuronal tumor: comparison with a typical low-grade example. Hum Pathol 70:105–112. https://doi.org/10.1016/j.humpath.2017.06.004

    Article  PubMed  Google Scholar 

  31. Aguilera D, Castellino RC, Janss A et al (2018) Clinical responses of patients with diffuse leptomeningeal glioneuronal tumors to chemotherapy. Childs Nerv Syst 34:329–334. https://doi.org/10.1007/s00381-017-3584-x

    Article  PubMed  Google Scholar 

  32. Lin A, Rodriguez FJ, Karajannis MA et al (2012) BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol 71:66–72. https://doi.org/10.1097/NEN.0b013e31823f2cb0

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez FJ, Schniederjan MJ, Nicolaides T et al (2015) High rate of concurrent BRAF-KIAA1549 gene fusion and 1p deletion in disseminated oligodendroglioma-like leptomeningeal neoplasms (DOLN). Acta Neuropathol 129:609–610. https://doi.org/10.1007/s00401-015-1400-9

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chiang JCH, Harreld JH, Orr BA et al (2017) Low-grade spinal glioneuronal tumors with BRAF gene fusion and 1p deletion but without leptomeningeal dissemination. Acta Neuropathol 134:159–162. https://doi.org/10.1007/s00401-017-1728-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar A, Pathak P, Purkait S et al (2015) Oncogenic KIAA1549-BRAF fusion with activation of the MAPK/ERK pathway in pediatric oligodendrogliomas. Cancer Genet 208:91–95. https://doi.org/10.1016/j.cancergen.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  36. Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405. https://doi.org/10.1007/s00401-011-0802-6

    Article  CAS  PubMed  Google Scholar 

  37. Hawkins C, Walker E, Mohamed N et al (2011) BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17:4790–4798. https://doi.org/10.1158/1078-0432.CCR-11-0034

    Article  CAS  PubMed  Google Scholar 

  38. Chiang J, Dalton J, Upadhyaya SA et al (2019) Chromosome arm 1q gain is an adverse prognostic factor in localized and diffuse leptomeningeal glioneuronal tumors with BRAF gene fusion and 1p deletion. Acta Neuropathol 137:179–181. https://doi.org/10.1007/s00401-018-1940-x

    Article  PubMed  Google Scholar 

  39. Manoharan N, Ajuyah P, Senapati A et al (2021) Diffuse leptomeningeal glioneuronal tumour (DLGNT) in children: the emerging role of genomic analysis. Acta Neuropathol Commun 9:147. https://doi.org/10.1186/s40478-021-01248-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nambirajan A, Suri V, Kedia S et al (2018) Paediatric diffuse leptomeningeal tumor with glial and neuronal differentiation harbouring chromosome 1p/19q co-deletion and H3.3 K27M mutation: unusual molecular profile and its therapeutic implications. Brain Tumor Pathol 35:186–191. https://doi.org/10.1007/s10014-018-0325-0

    Article  CAS  PubMed  Google Scholar 

  41. Gai D, Christie M, Gaillard F (2020) Adult diffuse leptomeningeal glioneuronal tumour with limited leptomeningeal involvement, lack of 1p deletion and BRAF V600E mutation. J Clin Neurosci 79:215–218. https://doi.org/10.1016/j.jocn.2020.07.039

    Article  CAS  PubMed  Google Scholar 

  42. Argani P, Harvey I, Nielsen GP et al (2020) EWSR1/FUS–CREB fusions define a distinctive malignant epithelioid neoplasm with predilection for mesothelial-lined cavities. Mod Pathol 33:2233–2243. https://doi.org/10.1038/s41379-020-0646-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dyson K, Rivera-Zengotita M, Kresak J et al (2016) FGFR1 N546K and H3F3A K27M mutations in a diffuse leptomeningeal tumour with glial and neuronal markers. Histopathology 69:704–707. https://doi.org/10.1111/his.12983

    Article  PubMed  Google Scholar 

  44. Navarro RE, Golub D, Hill T et al (2021) Pediatric midline H3K27M-mutant tumor with disseminated leptomeningeal disease and glioneuronal features: case report and literature review. Childs Nerv Syst 37:2347–2356. https://doi.org/10.1007/s00381-020-04892-0

    Article  PubMed  Google Scholar 

  45. Yao K, Duan Z, Wang Y et al (2019) Detection of H3K27M mutation in cases of brain stem subependymoma. Hum Pathol 84:262–269. https://doi.org/10.1016/j.humpath.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  46. Pratt D, Natarajan SK, Banda A et al (2018) Circumscribed/non-diffuse histology confers a better prognosis in H3K27M-mutant gliomas. Acta Neuropathol 135:299–301. https://doi.org/10.1007/s00401-018-1805-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pages M, Beccaria K, Boddaert N et al (2018) Co-occurrence of histone H3 K27M and BRAF V600E mutations in paediatric midline grade I ganglioglioma. Brain Pathol 28:103–111. https://doi.org/10.1111/bpa.12473

    Article  CAS  PubMed  Google Scholar 

  48. Huse JT, Edgar M, Halliday J et al (2013) Multinodular and vacuolating neuronal tumors of the cerebrum: 10 cases of a distinctive seizure-associated lesion. Brain Pathol 23:515–524. https://doi.org/10.1111/bpa.12035

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pekmezci M, Stevers M, Phillips JJ et al (2018) Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathol 135:485–488. https://doi.org/10.1007/s00401-018-1820-4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alizada O, Ayman T, Akgun MY et al (2020) Multinodular and vacuolating neuronal tumor of the cerebrum: two cases and review of the literature. Clin Neurol Neurosurg 197:106149. https://doi.org/10.1016/j.clineuro.2020.106149

    Article  PubMed  Google Scholar 

  51. Nunes Dias L, Candela-Canto S, Jou C et al (2020) Multinodular and vacuolating neuronal tumor associated with focal cortical dysplasia in a child with refractory epilepsy: a case report and brief review of literature. Childs Nerv Syst 36:1557–1561. https://doi.org/10.1007/s00381-019-04496-3

    Article  PubMed  Google Scholar 

  52. Turner AL, D’Souza P, Belirgen M et al (2020) Atypical presentation of multinodular and vacuolating neuronal tumor of the cerebrum in a boy. J Neurosci Rural Pract 11:214–215. https://doi.org/10.1055/s-0039-3402574

    Article  PubMed  Google Scholar 

  53. Buffa GB, Chaves H, Serra MM et al (2020) Multinodular and vacuolating neuronal tumor of the cerebrum (MVNT): a case series and review of the literature. J Neuroradiol 47:216–220. https://doi.org/10.1016/j.neurad.2019.05.010

    Article  PubMed  Google Scholar 

  54. Nagaishi M, Yokoo H, Nobusawa S et al (2015) Localized overexpression of alpha-internexin within nodules in multinodular and vacuolating neuronal tumors. Neuropathology 35:561–568. https://doi.org/10.1111/neup.12217

    Article  CAS  PubMed  Google Scholar 

  55. Thom M, Liu J, Bongaarts A et al (2018) Multinodular and vacuolating neuronal tumors in epilepsy: dysplasia or neoplasia? Brain Pathol 28:155–171. https://doi.org/10.1111/bpa.12555

    Article  CAS  PubMed  Google Scholar 

  56. Penman CL, Faulkner C, Lowis SP et al (2015) Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Front Oncol 5:54. https://doi.org/10.3389/fonc.2015.00054

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rivera B, Gayden T, Carrot-Zhang J et al (2016) Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors. Acta Neuropathol 131:847–863. https://doi.org/10.1007/s00401-016-1549-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheaney B 2nd, Bowden S, Krause K et al (2019) An unusual recurrent high-grade glioneuronal tumor with MAP2K1 mutation and CDKN2A/B homozygous deletion. Acta Neuropathol Commun 7:110. https://doi.org/10.1186/s40478-019-0763-x

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brat DJ, Aldape K, Colman H et al (2020) cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol 139:603–608. https://doi.org/10.1007/s00401-020-02127-9

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brown NA, Furtado LV, Betz BL et al (2014) High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood 124:1655–1658. https://doi.org/10.1182/blood-2014-05-577361

    Article  CAS  PubMed  Google Scholar 

  61. Heppner DE, Eck MJ (2021) A structural perspective on targeting the RTK/Ras/MAP kinase pathway in cancer. Protein Sci 30:1535–1553. https://doi.org/10.1002/pro.4125

    Article  CAS  PubMed  Google Scholar 

  62. Maillo A, Orfao A, Espinosa AB et al (2007) Early recurrences in histologically benign/grade I meningiomas are associated with large tumors and coexistence of monosomy 14 and del(1p36) in the ancestral tumor cell clone. Neuro Oncol 9:438–446. https://doi.org/10.1215/15228517-2007-026

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fuzesi L, Frank D, Nguyen C et al (2005) Losses of 1p and chromosome 14 in renal oncocytomas. Cancer Genet Cytogenet 160:120–125. https://doi.org/10.1016/j.cancergencyto.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  64. Mourra N, Zeitoun G, Buecher B et al (2007) High frequency of chromosome 14 deletion in early-onset colon cancer. Dis Colon Rectum 50:1881–1886. https://doi.org/10.1007/s10350-007-9040-3

    Article  PubMed  Google Scholar 

  65. Menon AG, Rutter JL, von Sattel JP et al (1997) Frequent loss of chromosome 14 in atypical and malignant meningioma: identification of a putative ‘tumor progression’ locus. Oncogene 14:611–616. https://doi.org/10.1038/sj.onc.1200853

    Article  CAS  PubMed  Google Scholar 

  66. Cheung AK, Lung HL, Ko JM et al (2009) Chromosome 14 transfer and functional studies identify a candidate tumor suppressor gene, mirror image polydactyly 1, in nasopharyngeal carcinoma. Proc Natl Acad Sci USA 106:14478–14483. https://doi.org/10.1073/pnas.0900198106

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ko JM, Yau WL, Chan PL et al (2005) Functional evidence of decreased tumorigenicity associated with monochromosome transfer of chromosome 14 in esophageal cancer and the mapping of tumor-suppressive regions to 14q32. Genes Chromosom Cancer 43:284–293. https://doi.org/10.1002/gcc.20190

    Article  CAS  PubMed  Google Scholar 

  68. Lopez-Gines C, Cerda-Nicolas M, Gil-Benso R et al (2004) Association of loss of 1p and alterations of chromosome 14 in meningioma progression. Cancer Genet Cytogenet 148:123–128. https://doi.org/10.1016/s0165-4608(03)00279-6

    Article  CAS  PubMed  Google Scholar 

  69. Kroeger N, Klatte T, Chamie K et al (2013) Deletions of chromosomes 3p and 14q molecularly subclassify clear cell renal cell carcinoma. Cancer 119:1547–1554. https://doi.org/10.1002/cncr.27947

    Article  CAS  PubMed  Google Scholar 

  70. Tabernero MD, Espinosa AB, Maillo A et al (2005) Characterization of chromosome 14 abnormalities by interphase in situ hybridization and comparative genomic hybridization in 124 meningiomas: correlation with clinical, histopathologic, and prognostic features. Am J Clin Pathol 123:744–751

    Article  CAS  Google Scholar 

  71. Dichamp C, Taillibert S, Aguirre-Cruz L et al (2004) Loss of 14q chromosome in oligodendroglial and astrocytic tumors. J Neurooncol 67:281–285. https://doi.org/10.1023/b:neon.0000024218.68120.8d

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Information and Communications Technology Promotion (IITP) grant funded by the Korean government (MSIP) (no. 2019-0567).

Author information

Authors and Affiliations

Authors

Contributions

SDL reviewed the cases and wrote the manuscript. S-KK, JHP, and C-KC carried out the operations and patient care. SIK and JWP collected clinicopathological data. HY prepared and analyzed NGS data. JKW reviewed the pathology. S-HP supervised this research and edited the manuscript.

Corresponding author

Correspondence to Sung-Hye Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest or disclosures.

Ethical approval

This study was approved from the IRB of Seoul National University Hospital (1906–020-1037) and was conducted under the Helsinki declaration.

Consent to participate and publication

Because this study is a retrospective clinicopathological analysis using anonymized data, informed consent and publication consent were exempted by the Korean Bioethical and Safety Act.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.D., Kim, S.I., Park, J.W. et al. Emerging glioneuronal and neuronal tumors: case-based review. Brain Tumor Pathol 39, 65–78 (2022). https://doi.org/10.1007/s10014-021-00420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-021-00420-3

Keywords

Navigation