Skip to main content
Log in

Stability and Asymptotic Behavior of Systems with Multi-time

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Stability and asymptotic behavior of linear multi-time systems \(\frac {\partial }{\partial t_{i}} u(\textbf {t})= A_{i} u (\textbf {t})\) +f i (t) is considered, where A i are generators of commuting C 0-semigroups on a Banach space. We formulate and prove versions of the results on exponential stability to homogeneous linear systems with multi-time. For non-homogeneous systems, we introduce the compatibility condition and obtain the variation-of-constants formula. Using simulta neous solutions of Sylvester equations, we obtain results on asymptotic almost periodicity of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastassiou, G.A., Goldstein, G.R., Goldstein, J.A.: Uniqueness for evolution in multidimensional time. Nonlinear Anal. 64, 33–41 (2006)

  2. Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306, 837–852 (1988)

  3. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems Monographs in Mathematics, 2nd, vol. 96. Birkhäuser, Basel (2011)

  4. Baillon, J.B., Clément, P.h.: Examples of unbounded imaginary powers of operators. J. Funct. Anal. 100, 419–434 (1991)

  5. Barles, G., Tourin, A.: Commutation properties of semigroups for first-order Hamilton-Jacobi equations and application to multi-time equations. Indiana Univ. Math. J. 50, 1523–1544 (2001)

  6. Batty, C.J.K., Vu, Q.P.: Stability of strongly continuous representations of Abelian semigroups. Math. Z 209, 75–88 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhatia, R., Rosenthal, P.: How and why to solve the operator equation AX−XB = Y. Bull. Lond. Math. Soc. 29, 1–21 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cardin, F., Viterbo, C.: Commuting Hamiltonians and Hamilton–Jacobi multi-time equations. Duke Math. J. 144, 235–284 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Choi, M.D., Davis, C.: The spectral mapping theorem for joint approximate point spectrum. Bull. Am. Math. Soc. 80, 317–321 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  10. Datko, V.: Extending a theorem of A.M. Lyapunov to Hilbert spaces. J. Math. Anal. Appl. 32, 610–616 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Daleckiǐ, Ju.L., Kreǐn, M.G.: Stability Theory of Solutions of Differential Equations in Banach Space. Transactions on Mathematical Monographs, vol. 43. American Mathematical Society, Providence, R.I. (1974)

  12. DeLeeuw, K., Glicksberg, I.: Applications of almost periodic compactifications. Acta Math. 105, 63–97 (1961)

    Article  MathSciNet  Google Scholar 

  13. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York-Berlin-Heidelberg (2000)

  14. Fréchet, M.: Les fonctions asymptotiquement presque-p´eriodiques. Rev. Sci. 79, 341–354 (1941)

    Google Scholar 

  15. Esterle, J., Strouse, E., Zouakia, F.: Stabilité asymptotiques des certains semigroupes d’opérateurs et idéaux primaires de L 1 (ℝ+). J. Oper. Theory 28, 203–227 (1992)

  16. Heinz, E.: Beiträger zur Störungtheorie der Spektralzerlegung. Math. Ann. 123, 415–438 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krein, S.G.: Linear Differential Equations in Banach Space. Transactions Mathematical Monographs. American Mathematical Society, Providence, R.I. (1972)

  18. Krengel, U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)

  19. Lions, P.-L., Rochet, J.-C.: Hopf forumula and multitime Hamilton-Jacobi equations. Proc. Am. Math. Soc. 96, 79–84 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee, S.-G., Vu, Q.-P.: Simultaneous solutions of Sylvester equations and idempotent matrices separating the joint spectrum. Linear Algebra Appl. 435, 2097–2109 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lee, S.-G., Vu, Q.-P.: Simultaneous solutions of operator Sylvester equations. Stud. Math. 222, 87–96 (2014). Vietnam Institute for Advanced Study in Mathematics, preprint VIASM 1334, July 11, 2013. ftp://file.viasm.org/Web/TienAnPham-13/Preprint1334.pdf

  22. Lyubich, Y.I.: Introduction to the Theory of Banach Representations of Groups. Birkhäuser, Berlin (1988)

  23. Lyubich, M.Y., Lyubich, Y.I.: Splitting-off the boundary spectrum for almost periodic operators and representations of semigroups. Teor. Funktsii, Funktsional’nyi Anal. Ikh Prilozheniya 45, 69–84 (1986). (in Russian)

    MATH  Google Scholar 

  24. Lyubich, Y.I., Vu, Q.P.: Asymptotic stability of linear differential equations in Banach spaces. Stud. Math. 88, 37–42 (1988)

    MATH  Google Scholar 

  25. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983)

  26. Rochet, J.-C.: The taxation principle and multi-time Hamilton-Jacobi equations. J. Math. Econ. 14, 113–128 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rosenblum, M.: On the operator equation BX − XA = Q. Duke Math. J. 23, 263–269 (1956)

  28. Ruess, W., Vu, Q.P.: Asymptotically almost periodic solutions of evolution equations in Banach spaces. J. Differ. Equ. 122, 282–301 (1995)

  29. Sklyar, G.M., Shirman, V.A.: On the asymptotic stability of a linear differential equations in a Banach space. Teor. Funktsiǐ, Funktsional. Anal. Ikh Prilozhenia 37, 127–132 (1982). In Russian

  30. Słodkowski, Z., Żelasko, W.: On joint spectra of commuting families of operators. Stud. Math. 50, 127–148 (1974)

    MATH  Google Scholar 

  31. Udrişte, C.: Multitime controllability, observability and the bang-bang principle. J. Optim. Theory Appl. 139, 141–157 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Vu, Q.P., Lyubich, Y.I.: A spectral criterion for asymptotic almost periodicity of uniformly continuous representation of Abelian semigroups. Teor. Funktsiǐ, Funktsional. Anal. Ikh Prilozhenia 50, 38–43 (1988). (In Russian). English trans. J. Soviet Math. 51, 1263–1266 (1990).

  33. Vu, Q.P., Lyubich, Y.I.: A spectral criterion for almost periodicity of one-parameter semigroups. Teor. Funktsiǐ, Funktsional. Anal. i Prilozhenia 47, 36–41 (1987). (In Russian). English trans. in J. Soviet Math. 48, 644–647 (1990)

  34. Vu, Q.P.: Theorems of Katznelson–Tzafriri type for semigroups of operators. J. Funct. Anal. 103, 74–84 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Vu, Q.P.: The Operator equation AX −XB = C with unbounded operators A and B and related abstract Cauchy problems. Math. Z. 208, 567–588 (1991)

    Article  MathSciNet  Google Scholar 

  36. Vu, Q.P., Schüler, E.: The operator equation AX −XB = C, admissibility, and asymptotic behaviour of differential equations. J. Differ. Equ. 145, 394–419 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank an anonymous referee for the many useful and constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quoc-Phong Vu.

Additional information

Dedicated to Nguyen Khoa Son’s 65th birthday.

Part of this work was done during the author’s visit to the Vietnam Institute of Advanced Study in Mathematics, Hanoi, Vietnam, June–July 2013.

Appendix:

Appendix:

In this Appendix, we present a proof of Proposition 1.

Proposition 1

Let T i (t) (1≤i≤k) be commuting C 0 -semigroups, with generators A i . Then the operators A i are commuting, i.e., \(A_{i}A_{j}x = A_{j}A_{i}x (\forall x \in D(A_{i}A_{j}) \cap D(A_{j}A_{i}))\) , the operator A=A 1 +⋯+A k is closable, densely defined, and its closure \(\overline {A}\) is the generator of the semigroup T(t)=T 1 (t)⋯T k (t). Moreover, the linear manifold \(D_{2}(\mathcal {A}) :=~\cap _{i,j=1}^{k} D(A_{i}A_{j})\) also is dense.

First, recall the following well-known facts. If T(t) (t≥0) is a one-parameter C 0 semigroup in a Banach space \(\mathcal E\), then its generator A is a closed, densely defined linear operator. Moreover, the following hold:

  1. (i)

    If xD(A), then T(t)xD(A) and \(\frac {d}{dt}T(t)x = AT(t)x = T(t)Ax\);

  2. (ii)

    For all \(x \in \mathcal E\) we have \({{\int }_{0}^{t}} T(s)xds \in D(A)\) and \(A{{\int }_{0}^{t}} T(s)xds = T(t)x - x\); if, in addition, xD(A), then \({{\int }_{0}^{t}} T(s)Axds = T(t)x - x\);

  3. (iii)

    \(\lim _{t~\to ~0}\frac {1}{t}{{\int }_{0}^{t}} T(s)xds~=~x \ (\forall x~\in ~E)\).

Lemma 4

If x ∈ D(A i ), then \(\mathcal T(\mathbf {t})x~\in ~D(A_{i})\ (\forall \mathbf {t}~\in ~\mathbb R_{+}^{k})\).

Proof

Let xD(A i ). We have

$$\lim_{h\to0} \frac{1}{h}\left[T_{i}(h)T_{j}(t)x-T_{j}(t)x\right]=T_{j}(t)\lim_{h\to0} \frac{1}{h}\left[T_{i}(h)x-x\right]= T_{j}(t)A_{i}x, $$

which implies that T j (t)xD(A i ) and A i T j (t)x = T j (t)A i x. Hence, \(\mathcal T(\textbf {t})x~\in ~D(A_{i})\) and \(A_{i}\mathcal {T}(\textbf {t})x~=~\mathcal {T}(\textbf {t})A_{i}x \ (\forall \textbf {t}~\in ~\mathbb {R}_{+}^{k})\). □

Proof of Proposition 1

By Fubini’s Theorem, we have

$${\int}_{[\textbf{0},\textbf{T}]} \mathcal T(\textbf{t})xd\textbf{t}~=~{\int}_{0}^{t_{k}}T_{k}(s_{k}){\int}_{0}^{t_{k-1}} T_{k-1}(s_{k-1}) {\cdots} {\int}_{0}^{t_{1}} T_{1}(s_{1})x ds_{1} {\cdots} ds_{k} \quad (\forall x\in \mathcal{E}). $$

Since \(x_{1}~:=~{\int }_{0}^{t_{1}} T_{1}(s_{1})x ds_{1}~\in ~D(A_{1})\), we have, by (ii) and Lemma 4

$$x_{2}:= {\int}_{0}^{t_{2}} T_{2}(s_{2}){\int}_{0}^{t_{1}} T_{1}(s_{1})x ds_{1} ds_{2}={\int}_{0}^{t_{2}} T_{2}(s_{2})x_{1} ds_{2}\in D(A_{1})\cap D(A_{2}). $$

Continuing this process, we eventually obtain that

$${\int}_{[\textbf{0},\textbf{T}]} \mathcal T(\textbf{t})xd\textbf{t} \in \cap_{i=1}^{k} D(A_{i}). $$

Since, for every xE, we have

$$ \lim_{h\to0} \frac{1}{h^{k}} {\int}_{[0,h]^{k}} \mathcal T(\textbf{t})xd\textbf{t} =x, $$
(36)

where by [0,h]k we denote the generalized cube \(\underbrace {[0,h]\times {\cdots } \times [0,h]}_{k \text { times}}\), we conclude that \(D_{1}(\mathcal A)~=~\cap _{i=1}^{k} D(A_{i})\) is dense in \(\mathcal E\). Hence, the operator A = A 1+⋯+A k is densely defined. Consider now the product semigroup \(\mathcal T(t\textbf {1})~=~T_{1}(t){\cdots } T_{k}(t)\). Since \(\mathcal T(t\textbf {1})\) is a strongly continuous one-parameter semigroup, its generator, denoted (temporarily) by \(\widetilde {A}\), is closed and densely defined. Moreover, for every \(x~\in ~D_{1}(\mathcal A)\), \(\mathcal T(t\textbf {1})x\) is differentiable and

$$\begin{array}{@{}rcl@{}} \frac{d}{dt} \mathcal T(t\textbf{1})x&=& \frac{d}{dt} T_{1}(t){\cdots} T_{k}(t)x= T_{1}(t){\cdots} T_{k}(t)(A_{1}+\cdots+A_{k})x\\ &=&T_{1}(t){\cdots} T_{k}(t)Ax= T_{1}(t){\cdots} T_{k}(t) \widetilde{A}x. \end{array} $$

This implies that \(Ax~=~\widetilde {A}x (\forall x~\in ~D_{1}(\mathcal A))\), hence the operator A is closable and \(\overline {A}~=~\widetilde {A}\).

Next we show that \(\cap _{i,j=1}^{k}D(A_{i}A_{j})\) is dense. Let \(x~\in ~D_{1}(\mathcal A)\). We have, as shown above

$$\begin{array}{@{}rcl@{}} y:={\int}_{[\textbf{0},\textbf{T}]} \mathcal T(\textbf{t})xd\textbf{t} \in D_{1}(\mathcal A), \end{array} $$

and

$$\begin{array}{@{}rcl@{}} A_{i}y=A_{i}{\int}_{[\textbf{0},\textbf{T}]} \mathcal T(\textbf{t})xd\textbf{t}= {\int}_{[\textbf{0},\textbf{T}]} \mathcal T(\textbf{t})A_{i}xd\textbf{t} \in D_{1}(\mathcal A). \end{array} $$

This implies that \(y~\in ~\cap _{i,j=1}^{k} D(A_{j}A_{i})\). Now the identity (36) implies that \(\cap _{i,j=1}^{k} D(A_{j}A_{i})\) is dense \(D_{1}(\mathcal A)\), hence also dense in \(\mathcal E\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, QP. Stability and Asymptotic Behavior of Systems with Multi-time. Vietnam J. Math. 43, 417–437 (2015). https://doi.org/10.1007/s10013-015-0133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-015-0133-3

Keywords

Mathematics Subject Classification (2010)

Navigation