Skip to main content
Log in

On the Hausdorff Dimension of the Singular Set in Time for Weak Solutions to the Non-stationary Navier–Stokes Equation on Torus

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this note, we investigate the Hausdorff dimension of the possible time singular set of weak solutions to the Navier–Stokes equation on the three dimensional torus under some regularity conditions of Serrin’s type (Arch. RationalMech. Anal., 9, 187–195, 1962). The results in the paper relate the regularity conditions of Serrin’s type to the Hausdorff dimension of the time singular set. More precisely, we prove that if a weak solution u belongs to L r(0, T; V α ) then the \(\left (1-\frac {r(2\alpha -1)}{4}\right )\)-dimensional Hausdorff measure of the time singular set of u is zero. Here, r is just assumed to be positive. We also establish that if a weak solution u belongs to L r(0, T; W 1, q) then the \(\left (1-\frac {r(2q-3)}{2q}\right )\)-dimensional Hausdorff measure of the time singular set of u is zero. When r = 2, α = 1, or r = 2, q = 2, we recover a result of Leray (Acta Math. 63, 193–248, 1934), Scheffer (Commun. Math. Phys. 55, 97–112, 1977), Foias and Temam (J. Math. Pures Appl. 58, 339–368, 1979), and Temam (Navier–Stokes equations and nonlinear functional analysis. SIAM, Philadelphia, 1995). Our results in some way also relate to the regularity results obtained by Giga (J. Differ. Equ. 62, 186–212, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão de Veiga, H.: A new regularity class for the Navier–Stokes equations in ℝn. Chin. Ann. Math. Ser. B 16, 407–412 (1995)

    Google Scholar 

  2. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Math. Appl. 35, 771–831 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Foias, C., Temam, R.: Some analytic and geometric properties of the solutions of the Navier–Stokes equations. J. Math. Pures Appl. 58, 339–368 (1979)

    MATH  MathSciNet  Google Scholar 

  4. Giga, Y.: Solutions of semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes systems. J. Differ. Equ. 62, 186–212 (1986)

    Article  MathSciNet  Google Scholar 

  5. Hopf, E.: Über die anfangswertaufgabe für die hydrodynamischen grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hou, T.Y., Lei, Z.: On the partial regularity of a 3D model of the Navier–Stokes equations. Commun. Math. Phys. 287, 589–612 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ladyzhenskaya, O.A.: Solution “in the large” of the nonstationary value problem for the Navier–Stokes system with two space variables. Commun. Pure Appl. Math. 12, 427–433 (1959)

    Article  MATH  Google Scholar 

  8. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1963)

    MATH  Google Scholar 

  9. Leray, J.: Essai sur les mouvements d’un liquide visquex emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  10. Robinson, J.C., Sadowski, W.: On the dimension of the singular set of solutions to the Navier–Stokes equations. Commun. Math. Phys. 309, 497–506 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Scheffer, V.: Turbulence and Hausdorff dimension, in Turbulence and Navier–Stokes equations. In: Temam, R. (ed.) Lecture Notes in Mathematics, vol. 565, pp. 94–112. Springer, New York (1976)

    Google Scholar 

  12. Scheffer, V.: Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys. 55, 97–112 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  14. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Langer, R.E. (ed.) Nonlinear Problems, pp. 69–98. University of Wisconsin Press, Madison (1963)

    Google Scholar 

  15. Sohr, H.: The Navier–Stokes equations: an elementary functional Analytic Approach. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel (2001)

    Book  Google Scholar 

  16. Struwe, M.: On partial regularity results for the Navier–Stokes equations. Commun. Pure Appl. Math. 41, 437–458 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, North-Holland (1979)

  18. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. In: CBMS-NSF Regional Conference Series in Applied Mathematics. 2nd edn., Society for Industrial and Applied Mathematics (SIAM), vol. 66, Philadelphia (1995)

Download references

Acknowledgments

The authors express their thanks to NAFOSTED for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Minh Tri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khai, D.Q., Tri, N.M. On the Hausdorff Dimension of the Singular Set in Time for Weak Solutions to the Non-stationary Navier–Stokes Equation on Torus. Vietnam J. Math. 43, 283–295 (2015). https://doi.org/10.1007/s10013-014-0117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-014-0117-8

Keywords

Mathematics Subject Classification (2010)

Navigation