Skip to main content
Log in

Spur gear teeth reconstruction via direct laser deposition

Rekonstruktion der Stirnradverzahnung mittels direkter Laserauftragung

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Fatigue damage, such as pitting and tooth root fatigue fracture, is one of several gear failure modes encountered in practical applications. Some of these failure modes are traditionally repairable, while others are known to be catastrophic and unrepairable. Direct Laser Deposition (DLD) is a Metal Additive Manufacturing process that could overcome this problem and extend the useful gear life. The DLD repair process proved to be applicable in several cases. Nevertheless, concrete applications for gears are still scarce and limited to preset teeth reconstruction without discussing functional applications. Based on that perspective, this research aims to evaluate the DLD performance of a gear under actual operation. This work details the strategy applied to restore a base material case-hardened 16 MnCr 5 FZG‑C Type C-GF pinion using a DLD combination of pure Inconel 625 (MetcoClad 625) for the tooth core and pure AISI 431 (Metco 42C) as a superficial coating. The pinion was tested for over 2.7 million cycles under different load stages (K1 to K9), functionally resisting until a static torque of 215.6 Nm, although it presented severe surface damage development throughout the campaign. This exploratory work thoroughly discusses the drawbacks encountered in the repair process, materials characterization, surface evolution of the restored teeth against base material, and mass loss during the tests.

Zusammenfassung

Ermüdungsschäden, wie z. B. Graufleckigkeit und Zahnfußermüdungsbruch, sind eine von mehreren Getriebeausfallarten, die in praktischen Anwendungen auftreten. Einige dieser Ausfallarten sind traditionell reparierbar, während andere als katastrophal und nicht reparierbar bekannt sind. Die Reparatur durch direkte Laserabscheidung (DLD) ist ein additives Fertigungsverfahren, das diese Probleme überwinden und die Lebensdauer des Getriebes verlängern könnte. Das DLD-Reparaturverfahren hat sich in mehreren Fällen als anwendbar erwiesen, von Schienen bis zu Zahnrädern. Dennoch sind konkrete Anwendungen für Zahnräder noch rar und beschränken sich auf die Rekonstruktion von Zähnen, ohne funktionelle Anwendungen zu diskutieren. Basierend auf dieser Perspektive zielt diese Forschungsarbeit darauf ab, die DLD-Reparaturleistung eines FZG-Getriebes unter realem Betrieb zu bewerten. Diese Arbeit beschreibt die Strategie zur Wiederherstellung eines einsatzgehärteten 16 MnCr 5 FZG-Typ-C-Ritzels aus Grundmaterial unter Verwendung einer DLD-Kombination aus reinem Inconel 625 (MetcoClad 625) für den Zahnkern und reinem AISI 431 (Metco 42C) als Oberflächenbeschichtung. Das Ritzel wurde über 2,7 Mio Zyklen in verschiedenen Belastungsstufen (K1 bis K9) getestet und hielt bis zu einem Drehmoment von 215,6 Nm funktionell stand, obwohl es während der gesamten Versuche Oberflächenschäden aufwies. Diese explorative Arbeit diskutiert gründlich die Nachteile, die beim Reparaturprozess, der Materialcharakterisierung, der Oberflächenentwicklung der reparierten Zähne gegenüber dem Basismaterial und dem Masseverlust während der Tests aufgetreten sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. International Standard ISO 10825 – 1: Gears—Wear and damage to gear teeth—Part 1: Nomenclature and characteristics, Reference number ISO 10825-1:2022 (E), Published in Switzerland. 2022

  2. Michaud M, Sroka GJ, Benson RE (2010) A novel approach to the refurbishment of wind turbine gears. Technical paper 10FTM03. American Gear Manufacturers Association, Virginia

    Google Scholar 

  3. Albertini H, Gorla C, Rosa F (2016) A new approach to repair large industrial gears damaged by surface degradation—the refurbishment using the modification of both the profile shift coefficient and the pressure angle. Technical Paper 16FTM23. American Gear Manufacturers Association, Virginia

    Google Scholar 

  4. Nikam SH, Jain NK (2017) Laser-based repair of damaged dies, molds, and gears. In: Gupta K (ed) Advanced manufacturing technologies. Materials forming, machining, and tribology. Springer, Cham https://doi.org/10.1007/978-3-319-56099-1_6

    Chapter  Google Scholar 

  5. Liu Q, Djugum R, Sun S, Walker K, Choi Y, Brandt M (2017) Repair and manufacturing of military aircraft components by additive manufacturing technology. In: Proceedings of the 17th Australian International Aerospace Congress (AIAC 2017) Melbourne

    Google Scholar 

  6. Mahamood RM (2017) Areas of application of laser metal deposition process—part repair and remanufacturing. Laser metal deposition process of metals, alloys, and composite materials. Springer, Cham https://doi.org/10.1007/978-3-319-64985-6_7

    Book  Google Scholar 

  7. Saboori A, Aversa A, Marchese G, Biamino S, Lombardi M, Fino P (2019) Application of directed energy deposition-based additive manufacturing in repair. Appl Sci 9(16):3316. https://doi.org/10.3390/app9163316

    Article  Google Scholar 

  8. Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modelling and diagnostics. Addit Manuf 8(27):36–62. https://doi.org/10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  9. Shi J, Bai SQ (2013) Research on gear repairing technology by laser cladding. Key Eng Mater 546(5):40–44. https://doi.org/10.4028/www.scientific.net/KEM.546

    Article  Google Scholar 

  10. Zhu L, Wang S, Pan H, Yuan C, Chen X (2020) Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology. J Manuf Process 49(11):344–354. https://doi.org/10.1016/j.jmapro.2019.12.009

    Article  Google Scholar 

  11. Bons M (2020) Gear repair using laser metal deposition. TU Delft Mechanical, Maritime and Materials Engineering, Delft (Master of Science thesis)

    Google Scholar 

  12. Guan C, Yu T, Zhao Y, Chen L, Chen Y (2023) Repair of gear by laser cladding Ni60 alloy powder: process, microstructure and mechanical performance. Appl Sci 13(1):319. https://doi.org/10.3390/app13010319

    Article  Google Scholar 

  13. Faculty of Engineering of the University of Porto (FEUP) Gear3D-3D reconstruction of large gear teeth via direct laser deposition, POCI-01-0247-FEDER-039848. https://sigarra.up.pt/feup/en/PROJECTOS_GERAL.FICHA_PROJECTO?p_id=74562

  14. Ferreira AA, Darabi R, Sousa JP, Cruz JM, Reis AR, Vieira MF (2021) Optimization of direct laser deposition of a Martensitic steel powder (Metco 42C) on 42crMo4 steel. Metals 11(4):672. https://doi.org/10.3390/met11040672

    Article  Google Scholar 

  15. Ferreira AA, Amaral RL, Romio PC, Cruz JM, Reis AR, Vieira MF (2021) Deposition of nickel-based Superalloy claddings on low alloy structural steel by direct laser deposition. Metals 11(8):1326. https://doi.org/10.3390/met11081326

    Article  Google Scholar 

  16. Ferreira AA, Reis AR, Amaral RL, Cruz JM, Romio PC, Seabra JHO, Vieira MF (2022) Mechanical and microstructural characterisation of bulk Inconel 625 produced by direct laser deposition. Mater Sci Eng A 838:142777. https://doi.org/10.1016/j.msea.2022.142777

    Article  Google Scholar 

  17. Ferreira AA, Reis AR, Sousa JP, Romio PC, Cruz J, Seabra JHO, Vieira MF (2021) Functionally graded materials fabricated by direct laser deposition for gear repair. 2nd International Conference on Advanced Joining Processes, Sintra

    Google Scholar 

  18. Romio P, Marques PMT, Fernandes CMCG, Seabra JHO (2022) Analysis of the rolling contact fatigue performance of direct laser deposition repairs for wind turbine gearbox applications. Porto-Lyon Seminar 2021, Lyon. https://doi.org/10.24840/978-972-752-293-4

    Book  Google Scholar 

  19. Romio P, Marques PMT, Fernandes CMCG, Cruz JMB, Seabra JHO (2022) Assessment of the rolling contact fatigue performance of discs repaired via direct laser deposition. 5th Meeting of the Young Researchers of LAETA, Lisbon

    Google Scholar 

  20. Forschungsvereinigung Antriebstechnik EV (1993) Test procedure for the investigation of micropitting capacity of gear lubricants. FVA Information Sheet, Research Projects Nr. 54/I–IV

    Google Scholar 

  21. International Organization for Standardization, Gears—FZG test procedures—Part 1: FZG test method A/8,3/90 for relative scuffing load-carrying capacity of oils (ISO 14632-1:2000), 2000.

  22. Fernandes CMCG, Pais JC, Martins RC, Seabra JHO (2021) Influence of running-in operating conditions on the steady-state torque loss of ground spur gears. Forsch Ingenieurwes 85(16):567–582. https://doi.org/10.1007/s10010-021-00447-0

    Article  Google Scholar 

  23. International Standard ISO 21920‑2.: Geometrical product specifications (GPS)—Surface texture: Profile—Part 2: Terms, definitions and surface texture parameters. 2021.

  24. Blateyron F (2013) The areal field parameters. In: Leach R (ed) Characterisation of areal surface texture. Springer, Berlin https://doi.org/10.1007/978-3-642-36458-7_2

    Chapter  Google Scholar 

  25. Cuffaro V (2013) Prediction method for the surface damage in splined couplings. Politecnico di Torino, Torino (PhD. Thesis in Mechanic)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of several projects and grants, namely:

National Funds through Fundação para a Ciência e a Tecnologia (FCT) under the PhD grant 2021.05562.BD;

GEAR3D under project POCI-01-0247-FEDER-039848;

LAETA under project UID/50022/2020

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Romio.

Ethics declarations

Conflict of interest

P.C. Romio, P.M.T. Marques, J.H.O. Seabra, C.M.C.G. Fernandes, J. Gil, R. Cardoso, M.F. Vieira and J.M. Cruz declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romio, P.C., Marques, P.M.T., Seabra, J.H.O. et al. Spur gear teeth reconstruction via direct laser deposition. Forsch Ingenieurwes 88, 1 (2024). https://doi.org/10.1007/s10010-023-00721-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10010-023-00721-3

Navigation