Skip to main content
Log in

Contact characteristics of cycloid planetary gear drives considering backlashes and clearances

Kontakteigenschaften von Zykloiden-Planetengetrieben unter Berücksichtigung von Spiel und Lagerluft

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

The cycloid planetary gear reducers in so-called Cyclo-type design are developed for a long time and already used in many applications. However, the analysis of performance under some extreme conditions becomes more important because the demand for accuracy increases. Among them, bearing clearance play a significant role for contact characteristics of the drives. It is not only because the transmission accuracy can be affected, but also because the load capacity of bearings would be reduced accordingly. Because of presence of bearing clearances, the cycloid disc is floating with three degree of freedom in the planar mechanism. This condition will cause more complicate in the load analysis for multiple contact pairs. The aim of the paper is thus to analyse contact characteristics of the relevant contact pairs in the Cyclo-type gear drives considering not only the influences of the crank bearing and the pin-hole clearances, but also profile modification of cycloid flank. A computerized loaded tooth contact analysis (LTCA) approach based on influence coefficient method is proposed in the paper for analysis of Cyclo-type drives having clearances. The effects of the clearances on contact characteristics are afterwards analysed by using an example from industry. The variation of shared load, contact stress on each individual cycloid tooth and on bearing roller, as well as the load of pin-hole are simulated with comparison of three different amounts of bearing clearance. The results show that the bearing clearances affect the loads acting on the pins of the-pin-shaft more strongly than the bearing, and have almost no significant influence on the contact with the pins of the pin wheel. The pin-hole clearance has less influences on the acting loads on the contact pairs, but affects significantly the peak-to-peak value of transmission errors.

Zusammenfassung

Die Zykloiden-Planetengetriebe in sogenannter Cyclo-Bauweise werden seit langem entwickelt und bereits in vielen Anwendungen eingesetzt. Die Analyse der Leistung unter einigen extremen Bedingungen wird jedoch wichtiger, da die Anforderungen an die Genauigkeit steigen. Unter anderem spielt die Lagerluft eine wesentliche Rolle für die Kontakteigenschaften der Antriebe. Dies liegt nicht nur daran, dass die Übertragungsgenauigkeit beeinträchtigt werden kann, sondern auch, weil die Tragfähigkeit der Lager entsprechend reduziert wird. Wegen des Vorhandenseins von Lagerluft schwebt die Zykloidenscheibe mit drei Freiheitsgraden im planaren Getriebe. Diese Bedingung wird die Lastanalyse für mehrere Kontaktpaare komplizierter machen. Ziel der Arbeit ist es daher, die Kontakteigenschaften der relevanten Kontaktpaare in den Zykloidengetrieben unter Berücksichtigung der Einflüsse der Kurbellagerlüfte und der Bolzen-Bohrung-Spiele, aber auch der Profilmodifikation der Zykloidenflanke zu analysieren. Ein computergestützter belasteter Kontaktanalyse Ansatz auf der Grundlage eines Einflusskoeffizientenverfahrens wird in disem Artikel zur Analyse von Cyclo-Antrieben mit Spiel und Lagerluft vorgeschlagen. Die Auswirkungen von Lagerluft und Spiel auf die Kontakteigenschaften werden anschließend anhand eines Beispiels aus der Industrie analysiert. Die Variation der geteilten Belastung, der Kontaktspannung an jedem einzelnen Zykloidenzahn und an der Lagerrolle sowie die Belastung der Bolzen-Bohrung werden durch den Vergleich von drei verschiedenen Lagerluftgrößen simuliert. Die Ergebnisse zeigen, dass die Lagerluft die auf die Zapfen der Zapfenwelle wirkenden Belastungen stärker beeinflussen als das Lager und den Kontakt mit den Triebstockverzahnung des Innenrades fast nicht wesentlich beeinflussen. Das Pin-Bohrung-Spiel hat weniger Einfluss auf die einwirkenden Belastungen der Kontaktpaare, beeinflusst aber maßgeblich den Spitze-Tal-Wert von Übertragungsfehlern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

  1. Transmission Machinery Co., Ltd., http://www.transcyko-transtec.com/. 2021

  2. Braren LK (1928) Gear transmission. US Patent 1694031A, USA

  3. Hong SW, Tong VC (2016) Rolling-element bearing modeling: a review. Int J Precis Eng Manuf 17:1729–1749. https://doi.org/10.1007/s12541-016-0200-z

    Article  Google Scholar 

  4. Harris TA, Kotzalas MN (2006) Essential concepts of bearing technology. CRC Press, Taylor & Francis Group, Boca Raton, USA

    Book  Google Scholar 

  5. Ji P, Gao Yuan MF, An Q (2015) Influence of roller diameter error on contact stress for cylindrical roller bearing. Proc Inst Mech Eng Part J J Eng Tribol Vol 229(6):689–697. https://doi.org/10.1177/1350650114559617

    Article  Google Scholar 

  6. Filetti EG, Rumbarger JH (1970) A General method for predicting the influence of structural support upon rolling element bearing performance. J Lubric Tech-T ASME 92(1):121–127. https://doi.org/10.1115/1.3451289

    Article  Google Scholar 

  7. Bourdon A, Rigal JF, Play D (1999) Static rolling bearing models in a CAD environment for the study of complex mechanisms part II—complete assembly model. ASAE. J Tribol 121(2):215–223. https://doi.org/10.1115/1.2833924

    Article  Google Scholar 

  8. Szuminski P (2007) Determination of the stiffness of rolling kinematic pairs of manipulators. Mech Mach Theory 42:1082–1102. https://doi.org/10.1016/j.mechmachtheory.2006.09.009

    Article  MATH  Google Scholar 

  9. Edwin LJ (2011) Numerical model to study of contact force in a cylindrical roller bearing with technical mechanical event simulation. J Mech Eng Autom 1:1–7. https://doi.org/10.5923/j.jmea.20110101.01

    Article  Google Scholar 

  10. Qian W (2018) Dynamic simulation of cylindrical roller bearings. Doctoral thesis of. RWTH Aachen, University

    Google Scholar 

  11. Kabus S, Hansen MR (2014) Mouritsen Oϕ. A New Quasi-static Multi-degree Freedom Tapered Roll Bear Model To Accurately Consider Non-hertzian Contact Press Time-domain Simulation P I Mech Eng K—j Mul 228:111–125. https://doi.org/10.1177/1464419313513446

    Article  Google Scholar 

  12. Xu LX, Yang YH (2016) Dynamic modelling and contact analysis of a cycloid-pin gear mechanism with a turning arm cylindrical roller bearing. Mech Mach Theory 104:327–349. https://doi.org/10.1016/j.mechmachtheory.2016.06.018

    Article  Google Scholar 

  13. Xu LX, Chen BK, Li CY (2019) Dynamic modelling and contact analysis of bearing-cycloid-pinwheel transmission mechanisms used in joint rotate vector reducer. Mech Mach Theory 137:432–458. https://doi.org/10.1016/j.mechmachtheory.2019.03.035

    Article  Google Scholar 

  14. Huang J, Li C, Chen B (2020) Optimization design of RV reducer crankshaft bearing. Appl Sci. https://doi.org/10.3390/app10186520

    Article  Google Scholar 

  15. Tsai SJ, Huang CH, Yeh HY, Huang WJ (2015) Loaded tooth contact analysis of cycloid planetary gear drives. Proc. IFToMM 14th World Congress. https://doi.org/10.6567/IFToMM.14TH.WC.OS6.014

  16. Tsai SJ, Huang WJ, Huang CH (2015) A computerized approach for load analysis of planetary gear drives with epitrochoid-pin tooth-pairs. VDI-Berichte 2255(1):307–317

    Google Scholar 

  17. Huang CH, Tsai SJ (2017) No.6. A Study on loaded tooth contact analysis of a cycloid planetary gear reducer considering friction and bearing roller stiffness. J Adv Mech Des Syst .11, vol 11. https://doi.org/10.1299/jamdsm.2017jamdsm0077

    Book  Google Scholar 

  18. Chang LC, Tsai SJ, Huang CH (2019) A study on tooth profile modification of cycloid planetary gear drives with tooth number difference of two. Forsch Ingenieurwes 83:409–424. https://doi.org/10.1007/s10010-019-00355-4

    Article  Google Scholar 

  19. Tsai SJ, Chang LC, Huang CH (2017) Design of cycloid planetary gear drive with tooth number difference of two. Forsch Ingenieurwes 81:325–336. https://doi.org/10.1007/s10010-017-0244-y

    Article  Google Scholar 

  20. Wu SH, Tsai SJ (2009) Contact stress analysis of skew conical involute gear drives in approximate line contact. Mech Mach Theory 44:1658–1676. https://doi.org/10.1016/j.mechmachtheory.2009.01.010

    Article  MATH  Google Scholar 

Download references

Funding

The authors would like to thank the Ministry of Science and Technology, Taiwan (MOST 109-2221-E-008-001-) and Transmission Machinery Co., Ltd., Taiwan for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Jeng Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, LC., Tsai, SJ. & Huang, CH. Contact characteristics of cycloid planetary gear drives considering backlashes and clearances. Forsch Ingenieurwes 86, 337–356 (2022). https://doi.org/10.1007/s10010-021-00535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00535-1

Navigation