Skip to main content
Log in

An interdisciplinary framework to predict premature roller element bearing failures in wind turbine gearboxes

Ein interdisziplinärer Rahmen zur Vorhersage vorzeitiger Lagerausfälle von Rollenelementen in Windkraftanlagen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Roller element bearings present in the intermediate and high-speed stages of wind turbine gearboxes operate in dynamic working conditions and in some cases may fail within 30% or less of their designed lifetime. Upon investigation, it has been identified that these premature failures happen due to a peculiar failure mode associated with formation of white etching cracks (WEC). This continues to be a great challenge for the wind energy operators as it leads to an increase of maintenance and operation costs in addition to long wind turbine downtime. Therefore, the industry is in dire need of a lifetime prediction methodology that could take in multi-scale inputs ranging from bearing loads at the system level down to the level of bearing material properties at the microscopic level. This work summarizes the overall approach of a project that aims towards an integrated framework which links load data from the bearings and microstructure related non-metallic inclusion statistics from bearing steels, to predict a material based probability of failure. The interlink between both aspects is a numerical rolling contact fatigue (RCF) framework based on finite element analysis, which includes multi-scale data as an input to calculate rolling contact fatigue damage. The outcome will help the wind industry to better predict bearing failures.

Zusammenfassung

Rollenelementlager, die in den Zwischen- und Hochgeschwindigkeitsstufen von Windturbinengetrieben vorhanden sind, arbeiten unter dynamischen Arbeitsbedingungen und können in einigen Fällen innerhalb von 30% oder weniger ihrer vorgesehenen Lebensdauer ausfallen. Bei der Untersuchung wurde festgestellt, dass diese vorzeitigen Fehler aufgrund eines besonderen Fehlermodus auftreten, der mit der Bildung von weißen Ätzrissen (WEC) verbunden ist. Dies ist weiterhin eine große Herausforderung für die Windenergiebetreiber, da es neben langen Ausfallzeiten von Windkraftanlagen zu einer Erhöhung der Wartungs- und Betriebskosten führt. Daher benötigt die Industrie dringend eine Methode zur Vorhersage der Lebensdauer, die mehrskalige Eingaben berücksichtigen kann, die von Lagerbelastungen auf Systemebene bis hin zu Lagermaterialeigenschaften auf mikroskopischer Ebene reichen. Diese Arbeit fasst den Gesamtansatz eines Projekts zusammen, das auf ein integriertes Framework abzielt, das Lastdaten aus den Lagern und mikrostrukturbezogene nichtmetallische Einschlussstatistiken von Lagerstählen verknüpft, um eine materialbasierte Ausfallwahrscheinlichkeit vorherzusagen. Die Verbindung zwischen beiden Aspekten ist ein numerisches RCF-Framework (Rolling Contact Fatigue), das auf einer Finite-Elemente-Analyse basiert und mehrskalige Daten als Eingabe zur Berechnung des Ermüdungsschadens durch Rollkontakt enthält. Das Ergebnis wird der Windindustrie helfen, Lagerausfälle besser vorherzusagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vaes D, Guo Y, Tesini P, Keller JA (2019) Investigation of roller sliding in wind turbine gearbox high-speed-shaft bearings https://doi.org/10.2172/1524765

    Book  Google Scholar 

  2. White etching cracks. http://evolution.skf.com/white-etching-cracks-a-consequence-not-a-root-cause-of-bearing-failure/. Accessed 1 July 2019

  3. Igba J, Alemzadeh K, Durugbo C, Henningsen K (2015) Performance assessment of wind turbine gearboxes using in-service data: current approaches and future trends. Renew Sustain Energy Rev 50:144–159. https://doi.org/10.1016/j.rser.2015.04.139

    Article  Google Scholar 

  4. Keller JA, Gould B, Greco A (2017) Investigation of bearing axial cracking: Benchtop and full-scale test results https://doi.org/10.2172/1375844

    Book  Google Scholar 

  5. Evans M‑H (2013) White structure flaking failure in bearings under rolling contact fatigue. https://eprints.soton.ac.uk/355966/. Accessed: 20 Dec 2018

  6. Vegter RH, Stadler K (2020) Review on crack initiation and premature failures in bearing applications. In: Beswick JM (ed) Bearing steel technologies: 12th volume, progress in bearing steel metallurgical testing and quality assurance ASTM International, West Conshohocken, pp 1–25 https://doi.org/10.1520/STP162320190054

    Chapter  Google Scholar 

  7. Bruce T, Rounding E, Long H, Dwyer-Joyce RS (2015) Characterisation of white etching crack damage in wind turbine gearbox bearings. Wear 338–339:164–177. https://doi.org/10.1016/j.wear.2015.06.008

    Article  Google Scholar 

  8. Grabulov A (2010) Fundamentals of rolling contact fatigue

    Google Scholar 

  9. Al-Tameemi HA, Long H, Dwyer-Joyce RS (2019) Damage characterisation of white etching cracks in a black oxide coated wind turbine gearbox bearing. Wear. https://doi.org/10.1016/j.wear.2019.05.038

    Article  Google Scholar 

  10. Cerullo M (2014) Sub-surface fatigue crack growth at alumina inclusions in AISI 52100 roller bearings. Procedia Eng 74:333–338. https://doi.org/10.1016/j.proeng.2014.06.274

    Article  Google Scholar 

  11. Morsdorf L, Mayweg D, Li Y, Diederichs A, Raabe D, Herbig M (2020) Moving cracks form white etching areas during rolling contact fatigue in bearings. Mater Sci Eng A 771:138659. https://doi.org/10.1016/j.msea.2019.138659

    Article  Google Scholar 

  12. Tian C, Liu J, Lu H, Dong H (2017) Estimation of maximum inclusion by statistics of extreme values method in bearing steel. J Iron Steel Res 24:1131–1136. https://doi.org/10.1016/S1006-706X(17)30164-4

    Article  Google Scholar 

  13. Atkinson HV, Shi G (2003) Characterization of inclusions in clean steels: a review including the statistics of extremes methods. Prog Mater Sci 48:457–520. https://doi.org/10.1016/S0079-6425(02)00014-2

    Article  Google Scholar 

  14. Bruce T, Long H, Dwyer-Joyce RS (2015) Dynamic modelling of wind turbine gearbox bearing loading during transient events. IET Renew Power Gener 9:821–830. https://doi.org/10.1049/iet-rpg.2014.0194

    Article  Google Scholar 

  15. Verstraeten T, Nowe A, Keller J, Guo Y, Sheng S, Helsen J (2019) Fleetwide data-enabled reliability improvement of wind turbines. arXiv:1903.11518

    Book  Google Scholar 

  16. Evans M‑H, Richardson AD, Wang L, Wood RJK (2013) Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF). Wear 306:226–241. https://doi.org/10.1016/j.wear.2013.03.008

    Article  Google Scholar 

  17. Manieri F, Stadler K, Morales-Espejel GE, Kadiric A (2019) The origins of white etching cracks and their significance to rolling bearing failures. Int J Fatigue 120:107–133. https://doi.org/10.1016/j.ijfatigue.2018.10.023

    Article  Google Scholar 

  18. A01 (2020) Committee Specification for high-carbon anti-friction bearing steel. ASTM International. https://doi.org/10.1520/A0295_A0295M-14R20

  19. Halfpenny A, Chabod A, Czapski P, Aldred J, Munson K, Bonato M (2019) Probabilistic fatigue and reliability simulation. Procedia Struct Integr 19:150–167. https://doi.org/10.1016/j.prostr.2019.12.018

    Article  Google Scholar 

  20. Ravi G, De Waele W, Hertelé S (2021) Numerical methodology to predict subsurface crack initiation from non-metallic inclusions due to rolling contact fatigue. In: Abdel Wahab M (ed) Proceedings of the 8th international conference on fracture, fatigue and wear. Springer Singapore, Singapore, pp 455–471

    Chapter  Google Scholar 

  21. Zeng D, Xu T, Liu W, Lu L, Zhang J, Gong Y (2020) Investigation on rolling contact fatigue of railway wheel steel with surface defect. Wear 203207:446–447. https://doi.org/10.1016/j.wear.2020.203207

    Article  Google Scholar 

  22. Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 11:149–165. https://doi.org/10.1111/j.1460-2695.1988.tb01169.x

    Article  Google Scholar 

  23. Sauvage P (2018) On an extension of the Fatemi and socie equation for rolling contact in rolling bearings. In: Proceedings of the 7th International Conference on Fracture Fatigue and Wear, pp 438–457

    Google Scholar 

  24. Evans M‑H (2016) An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Mater Sci Technol 32:1133–1169. https://doi.org/10.1080/02670836.2015.1133022

    Article  Google Scholar 

  25. Guo Y, Keller J (2020) Validation of combined analytical methods to predict slip in cylindrical roller bearings. Tribol Int. https://doi.org/10.1016/j.triboint.2020.106347

    Article  Google Scholar 

  26. Guo Y, Sheng S, Phillips C, Keller J, Veers P, Williams L (2020) A methodology for reliability assessment and prognosis of bearing axial cracking in wind turbine gearboxes. Renew Sustain Energy Rev 127:109888. https://doi.org/10.1016/j.rser.2020.109888

    Article  Google Scholar 

  27. Harris TA (2001) Rolling bearing analysis. Wiley, New York

    Google Scholar 

  28. 14:00-17:00: IEC 61400-4:2012, https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/42/44298.html. Accessed 7 February 2021

  29. Daems P‑J, Guo Y, Sheng S, Peeters C, Guillaume P, Helsen J (2020) Gaining insights in loading events for wind turbine drivetrain prognostics: preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5000-76286. https://www.nrel.gov/docs/fy20osti/76286.pdf

  30. Keller JA, Lambert SR (2018) Gearbox instrumentation for the investigation of bearing axial cracking https://doi.org/10.2172/1430825

    Book  Google Scholar 

  31. Long H, Wu J, Matthew F, Tavner P (2011) Fatigue analysis of wind turbine gearbox bearings using SCADA data and miner’s rule. European Wind Energy Association Conference (EWEA).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support via the MaDurOS program from VLAIO (Flemish Agency for Innovation and Entrepre-neurship) and SIM (Strategic Initiative Materials) through project SBO MaSiWEC (HBC.2017.0606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopalakrishnan Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, G., Daems, PJ., Nikolic, K. et al. An interdisciplinary framework to predict premature roller element bearing failures in wind turbine gearboxes. Forsch Ingenieurwes 85, 229–240 (2021). https://doi.org/10.1007/s10010-021-00463-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00463-0

Navigation