Skip to main content
Log in

Synthesis and application of poly(methacrylic acid-co-ethylene glycol dimethacrylate) as molecularly imprinted polymer in electrochemical sensor for atrazine detection

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Atrazine (ATZ) is one of the most widely used triazine herbicides in the world; it is highly toxic and poses a risk to environmental balance and human health. Therefore, its detection and monitoring of allowed concentrations are vital, preferably using simple and relatively low-cost analytical methods. Molecularly imprinted polymers (MIPs) are synthetic structures containing imprinted nanocavities that can specifically bind to their target with high sensitivity, selectivity, and viability. In this work, MIPs were synthesized by the precipitation method, using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, and atrazine as a template molecule in a single polymerization step, unlike other complex methodologies reported in the literature. For comparison purposes, NIP (non-imprinted polymer) was prepared. MIPs and NIPs were characterized using infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Through cyclic voltammetry (CV) and differential pulse (DP), atrazine was detected in an accurate spring water sample containing 1 to 100 ppb of the herbicide. The limit of detection (LOD) found was 0.02. Therefore, it was possible to synthesize an efficient MIP for detecting atrazine in spring water through a simple methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Dias ACL, Santos JMB, Santos ASP et al (2018) Ocorrência de Atrazina em águas no Brasil e remoção no tratamento da água: revisão sistemática. Revista Internacional de Ciências 8:149–168. https://doi.org/10.12957/ric.2018.34202

    Article  Google Scholar 

  2. Salahshoor Z, Ho K-V, Hsu S-Y et al (2022) Detection of atrazine and its metabolites by photonic molecularly imprinted polymers in aqueous solutions. Chem Eng J Adv 12:100368. https://doi.org/10.1016/j.ceja.2022.100368

    Article  CAS  Google Scholar 

  3. Fang L, Jia M, Zhao H et al (2021) Molecularly imprinted polymer-based optical sensors for pesticides in foods: recent advances and future trends. Trends Food Sci Technol 116:387–404. https://doi.org/10.1016/j.tifs.2021.07.039

    Article  CAS  Google Scholar 

  4. He B, Ni Y, Jin Y, Fu Z (2020) Pesticides-induced energy metabolic disorders. Sci Total Environ 729:139033. https://doi.org/10.1016/j.scitotenv.2020.139033

    Article  CAS  PubMed  Google Scholar 

  5. Chang J, Fang W, Chen L et al (2022) Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: a comprehensive review. Chemosphere 307:136006. https://doi.org/10.1016/j.chemosphere.2022.136006

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q, Lu H, Zhang Z et al (2022) Visible-light-driven molecularly imprinted self-powered sensor for atrazine with high sensitivity and selectivity by separating photoanode from recognition element. Sens Actuators B Chem 360:131670. https://doi.org/10.1016/j.snb.2022.131670

    Article  CAS  Google Scholar 

  7. Purcell M, Neault JF, Malonga H et al (2001) Interactions of atrazine and 2,4-D with human serum albumin studied by gel and capillary electrophoresis, and FTIR spectroscopy. Biochimica et Biophysica Acta (BBA) - Protein Struct Mol Enzymol 1548:129–138. https://doi.org/10.1016/S0167-4838(01)00229-1

    Article  CAS  Google Scholar 

  8. Brasil (2011) Ministério da Saúde. Portaria n.o 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade 1:39–46

    Google Scholar 

  9. Graziano N, McGuire MJ, Roberson A et al (2006) 2004 national atrazine occurrence monitoring program using the abraxis ELISA method. Environ Sci Technol 40:1163–1171. https://doi.org/10.1021/es051586y

    Article  CAS  PubMed  Google Scholar 

  10. Coelho ERC, Di BL (2017) Presença e remoção de atrazina, desetilatrazina, desisopropilatrazina e desetilhidroxiatrazina em instalação piloto de ozonização e filtração lenta. Eng Sanit Ambient 22:789–796. https://doi.org/10.1590/s1413-41522017147638

    Article  CAS  Google Scholar 

  11. World Health Organization (2022) Guidelines for drinking water quality. In: Fourth edition incorporating the first and second Adenda. Avaliable in https://www.who.int/publications/i/item/9789241549950

  12. Er EÖ, Çağlak A, Engin GÖ, Bakirdere S (2019) Ultrasound-assisted dispersive solid phase extraction based on Fe3O4/reduced graphene oxide nanocomposites for the determination of 4-tert octylphenol and atrazine by gas chromatography–mass spectrometry. Microchem J 146:423–428. https://doi.org/10.1016/j.microc.2019.01.040

    Article  CAS  Google Scholar 

  13. Bexfield LM, Belitz K, Lindsey BD et al (2021) Pesticides and pesticide degradates in groundwater used for public supply across the United States: occurrence and human-health context. Environ Sci Technol 55:362–372. https://doi.org/10.1021/acs.est.0c05793

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Salamova A, Venier M (2021) Occurrence, spatial, and seasonal variations, and gas–particle partitioning of atmospheric current-use pesticides (CUPs) in the Great Lakes basin. Environ Sci Technol 55:3539–3548. https://doi.org/10.1021/acs.est.0c06470

    Article  CAS  PubMed  Google Scholar 

  15. Hama JR, Kolpin DW, LeFevre GH et al (2021) Exposure and transport of alkaloids and phytoestrogens from soybeans to agricultural soils and streams in the Midwestern United States. Environ Sci Technol 55:11029–11039. https://doi.org/10.1021/acs.est.1c01477

    Article  CAS  Google Scholar 

  16. Qu M, Liu G, Zhao J et al (2020) Fate of atrazine and its relationship with environmental factors in distinctly different lake sediments associated with hydrophytes. Environ Pollut 256:113371. https://doi.org/10.1016/j.envpol.2019.113371

    Article  CAS  PubMed  Google Scholar 

  17. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747. https://doi.org/10.1039/b714449k

    Article  CAS  PubMed  Google Scholar 

  18. Wongkaew N, Simsek M, Griesche C, Baeumner AJ (2019) Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem Rev 119:120–194. https://doi.org/10.1021/acs.chemrev.8b00172

    Article  CAS  PubMed  Google Scholar 

  19. Basak S, Venkatram R, Singhal RS (2022) Recent advances in the application of molecularly imprinted polymers (MIPs) in food analysis. Food Control 139:109074. https://doi.org/10.1016/j.foodcont.2022.109074

    Article  Google Scholar 

  20. Vasapollo G, Del SR, Mergola L et al (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12:5908–5945. https://doi.org/10.3390/ijms12095908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahmoudpour M, Torbati M, Mousavi M-M et al (2020) Nanomaterial-based molecularly imprinted polymers for pesticides detection: recent trends and future prospects. TrAC, Trends Anal Chem 129:115943. https://doi.org/10.1016/j.trac.2020.115943

    Article  CAS  Google Scholar 

  22. Chen L, Wang X, Lu W et al (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211. https://doi.org/10.1039/C6CS00061D

    Article  CAS  PubMed  Google Scholar 

  23. Azizi A, Shahhoseini F, Langille EA et al (2021) Micro-gel thin film molecularly imprinted polymer coating for extraction of organophosphorus pesticides from water and beverage samples. Anal Chim Acta 1187:339135. https://doi.org/10.1016/j.aca.2021.339135

    Article  CAS  PubMed  Google Scholar 

  24. Kumar V, Kim K-H (2022) Use of molecular imprinted polymers as sensitive/selective luminescent sensing probes for pesticides/herbicides in water and food samples. Environ Pollut 299:118824. https://doi.org/10.1016/j.envpol.2022.118824

    Article  CAS  PubMed  Google Scholar 

  25. Pardieu E, Cheap H, Vedrine C et al (2009) Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal Chim Acta 649:236–245. https://doi.org/10.1016/j.aca.2009.07.029

    Article  CAS  PubMed  Google Scholar 

  26. Zhao B, Feng S, Hu Y et al (2019) Rapid determination of atrazine in apple juice using molecularly imprinted polymers coupled with gold nanoparticles-colorimetric/SERS dual chemosensor. Food Chem 276:366–375. https://doi.org/10.1016/j.foodchem.2018.10.036

    Article  CAS  PubMed  Google Scholar 

  27. Azizi A, Bottaro CS (2020) A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 1614:460603. https://doi.org/10.1016/j.chroma.2019.460603

    Article  CAS  PubMed  Google Scholar 

  28. Metwally M, Benhawy A, Khalifa R et al (2021) Application of molecularly imprinted polymers in the analysis of waters and wastewaters. Molecules 26:6515. https://doi.org/10.3390/molecules26216515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pichon V, Chapuis-Hugon F (2008) Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta 622:48–61. https://doi.org/10.1016/j.aca.2008.05.057

    Article  CAS  PubMed  Google Scholar 

  30. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40:2922. https://doi.org/10.1039/c0cs00084a

    Article  CAS  PubMed  Google Scholar 

  31. International Union of Pure and Applied Chemistry (2019) limit of detection. In: The IUPAC Compendium of Chemical Terminology, 3rd ed. International Union of Pure and Applied Chemistry (IUPAC), Research Triangle Park. Avaliable in https://goldbook.iupac.org/terms/view/L03540

  32. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2009) Introduction to spectroscopy, 4th edn. Brooks Cole Cengage Learning, Bellingham, Washington

    Google Scholar 

  33. de Alves LT, O, Erbetta CDC, Fernandes C, et al (2015) Síntese e caracterização de MIP com fenilalanina visando sua aplicação na técnica de SPE. Polímeros 25:596–605. https://doi.org/10.1590/0104-1428.2116

    Article  CAS  Google Scholar 

  34. Adu AA, Neolaka YAB, Riwu AAP et al (2020) Synthesis, characterization and evaluation of swelling ratio on magnetic p53-poly(MAA-co-EGDMA)@GO-Fe3O4(MIP@GO-Fe3O4)-based p53 protein and graphene oxide from kusambi wood (Schleichera oleosa). J Market Res 9:11060–11068. https://doi.org/10.1016/j.jmrt.2020.08.003

    Article  CAS  Google Scholar 

  35. Segatelli MGSV, ABT P, Yoshida IVP TC, (2010) Cadmium ion-selective sorbent preconcentration method using ion imprinted poly(ethylene glycol dimethacrylate-co-vinylimidazole). React Funct Polym 70:325–333. https://doi.org/10.1016/j.reactfunctpolym.2010.02.006

    Article  CAS  Google Scholar 

  36. Lv YK, Wang LM, Yang L et al (2012) Synthesis and application of molecularly imprinted poly(methacrylic acid)-silica hybrid composite material for selective solid-phase extraction and high-performance liquid chromatography determination of oxytetracycline residues in milk. J Chromatogr A 1227:48–53. https://doi.org/10.1016/j.chroma.2011.12.108

    Article  CAS  PubMed  Google Scholar 

  37. Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. John Wiley & Sons INC.

    Google Scholar 

  38. de Ávila LG, Leite SB, Dick DP, Pohlmann AR (2009) Formulações de atrazina em xerogéis: síntese e caracterização. Quim Nova 32:1727–1733. https://doi.org/10.1590/S0100-40422009000700009

    Article  Google Scholar 

  39. Che Lah NF, Ahmad AL, Low SC, Shoparwe NF (2019) The role of porogen-polymer complexation in atrazine imprinted polymer to work as an electrochemical sensor in water. J Environ Chem Eng 7:103500. https://doi.org/10.1016/j.jece.2019.103500

    Article  CAS  Google Scholar 

  40. Xu Z, Kuang D, Liu L, Deng Q (2007) Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interactions. J Pharm Biomed Anal 45:54–61. https://doi.org/10.1016/j.jpba.2007.05.024

    Article  CAS  PubMed  Google Scholar 

  41. Caro E, Marce R, Borrull F et al (2006) Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples. TrAC Trends Anal Chem 25:143–154. https://doi.org/10.1016/j.trac.2005.05.008

    Article  CAS  Google Scholar 

  42. Li S, Zhong T, Long Q et al (2021) A gold nanoparticles-based molecularly imprinted electrochemical sensor for histamine specific-recognition and determination. Microchem J 171:106844. https://doi.org/10.1016/j.microc.2021.106844

    Article  CAS  Google Scholar 

  43. Liu G, Yang X, Li T et al (2015) Preparation of a magnetic molecularly imprinted polymer using g-C3N4–Fe3O4 for atrazine adsorption. Mater Lett 160:472–475. https://doi.org/10.1016/j.matlet.2015.07.157

    Article  CAS  Google Scholar 

  44. Nsibande SA, Forbes PBC (2019) Development of a quantum dot molecularly imprinted polymer sensor for fluorescence detection of atrazine. Luminescence 34:480–488. https://doi.org/10.1002/bio.3620

    Article  CAS  PubMed  Google Scholar 

  45. Gkementzoglou C, Kotrotsiou O, Koronaiou M, Kiparissides C (2016) Development of a sandwich-type filtration unit packed with MIP nanoparticles for removal of atrazine from water sources. Chem Eng J 287:233–240. https://doi.org/10.1016/j.cej.2015.11.018

    Article  CAS  Google Scholar 

  46. Kotrotsiou O, Chaitidou S, Kiparissides C (2009) Boc-l-tryptophan imprinted polymeric microparticles for bioanalytical applications. Mater Sci Eng C 29:2141–2146. https://doi.org/10.1016/j.msec.2009.04.014

    Article  CAS  Google Scholar 

  47. Durai L, Badhulika S (2020) Highly selective trace level detection of Atrazine in human blood samples using lead-free double perovskite Al2NiCoO5 modified electrode via differential pulse voltammetry. Sens Actuators B Chem 325:128792. https://doi.org/10.1016/j.snb.2020.128792

    Article  CAS  Google Scholar 

  48. AMC technical briefAMC (1994) Is my calibration linear? Analyst 119:2363. https://doi.org/10.1039/an9941902363

    Article  Google Scholar 

  49. Traghetta DGVCMSCSVEM-NL (1996) Mecanismos de sorção da atrazina em solos: estudos espectroscópicos e polarográficos. Comunicado Técnico-EMBRAPA 14:1–7

    Google Scholar 

  50. Enoch RR, Stanko JP, Greiner SN et al (2007) Mammary gland development as a sensitive end point after acute prenatal exposure to an atrazine metabolite mixture in female Long-Evans rats. Environ Health Perspect 115:541–547. https://doi.org/10.1289/ehp.9612

    Article  CAS  PubMed  Google Scholar 

  51. Potter TL, Bosch DD, Dieppa A et al (2013) Atrazine fate and transport within the coastal zone in southeastern Puerto Rico. Mar Pollut Bull 67:36–44. https://doi.org/10.1016/j.marpolbul.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  52. Solomon KR, Baker DB, Richards P et al (1996) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31–76

    Article  CAS  Google Scholar 

  53. Brasil (2006) Ministério da Saúde. Secretaria de Vigilância em Saúde. vigilância e controle de qualidade da água ara consumo humano 212. Avaliable in https://bvsms.saude.gov.br/bvs/publicacoes/vigilancia_controle_qualidade_agua.pdf

  54. Xu S, Li J, Chen L (2011) Molecularly imprinted polymers by reversible addition–fragmentation chain transfer precipitation polymerization for preconcentration of atrazine in food matrices. Talanta 85:282–289. https://doi.org/10.1016/j.talanta.2011.03.060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPq, 302661/2020-4) and Central Analytica-UFC (funded by Finep-CT-INFRA, CAPES-Pró-Equipamentos and MCTI-CNPq-SisNano2.0) by the microscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roselayne Ferro Furtado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Gonzaga, M.L., de Albuquerque Oliveira, M., Furtado, R.F. et al. Synthesis and application of poly(methacrylic acid-co-ethylene glycol dimethacrylate) as molecularly imprinted polymer in electrochemical sensor for atrazine detection. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05876-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05876-9

Keywords

Navigation