Skip to main content
Log in

An ameliorated interface between PEO electrolyte and Li anode by Li1.3Al0.3Ti1.7(PO4)3 nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Due to their higher safety, stability and energy density, all-solid-state batteries will be promising candidates for the next generation of lithium battery systems. The acquisition of high-performance solid-state electrolytes is pivotal in the actualization of all-solid-state batteries. By uniformly dispersing nanoscale Li1.3Al0.3Ti1.7(PO4)3 (LATP) powders into polyethylene oxide (PEO)-LiClO4 at varying mass ratios, a composite electrolyte membrane of approximately 50 μm thickness was prepared using the casting method. Subsequent characterization of these materials, accomplished through X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic charge–discharge tests, unveiled intriguing findings. Although the beneficial effect of LATP on the conductivity of PEO is somewhat limited, it demonstrates a capability to reduce the interface impedance between polyethylene oxide and lithium metal, thereby enhancing interface stability. This research provides constructive insights and prompts for designing composite electrolytes for future all-solid-state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301. https://doi.org/10.1021/cr020731c

    Article  CAS  PubMed  Google Scholar 

  3. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  4. Liu K, Liu Y, Lin D, Pei A, Cui Y (2018) Materials for lithium-ion battery safety. Sci Adv 4(6):eaas9820. https://doi.org/10.1126/sciadv.aas9820

  5. Li W, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous-electrolytes. Science 264(5162):1115–1118. https://doi.org/10.1126/science.264.5162.1115

    Article  CAS  PubMed  Google Scholar 

  6. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2(4):16103. https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  7. Zhang Y, Zuo TT, Popovic J, Lim K, Yin YX, Maier J, Guo YG (2020) Towards better Li metal anodes: challenges and strategies. Mater Today 33:56–74. https://doi.org/10.1016/j.mattod.2019.09.018

    Article  CAS  Google Scholar 

  8. Placke T, Kloepsch R, Duehnen S, Winter M (2017) Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electr 21(7):1939–1964. https://doi.org/10.1007/s10008-017-3610-7

    Article  CAS  Google Scholar 

  9. Zhao Y, Zheng K, Sun X (2018) Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2(12):2583–2604. https://doi.org/10.1016/j.joule.2018.11.012

    Article  CAS  Google Scholar 

  10. Goodenough JB (2013) Evolution of strategies for modern rechargeable batteries. Accounts Chem Res 46(5):1053–1061. https://doi.org/10.1021/ar2002705

    Article  CAS  Google Scholar 

  11. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C (2019) Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 18(12):1278–1291. https://doi.org/10.1038/s41563-019-0431-3

    Article  CAS  PubMed  Google Scholar 

  12. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386. https://doi.org/10.1016/j.nanoen.2017.01.028

    Article  CAS  Google Scholar 

  13. Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 30(17):1705702. https://doi.org/10.1002/adma.201705702

    Article  CAS  Google Scholar 

  14. Shea JJ, Luo C (2020) Organic electrode materials for metal ion batteries. ACS Appl Mater Inter 12(5):5361–5380. https://doi.org/10.1021/acsami.9b20384

    Article  CAS  Google Scholar 

  15. Dirican M, Yan C, Zhu P, Zhang X (2019) Composite solid electrolytes for all-solid-state lithium batteries. Mater Sci Eng R 136:27–46. https://doi.org/10.1016/j.mser.2018.10.004

    Article  Google Scholar 

  16. Zhao W, Yi J, He P, Zhou H (2019) Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem Energy R 2(4):574–605. https://doi.org/10.1007/s41918-019-00048-0

    Article  CAS  Google Scholar 

  17. Wu P, Zhou W, Su X, Li J, Su M, Zhou X, Sheldon BW, Lu W (2023) Recent advances in conduction mechanisms, synthesis methods, and improvement strategies for Li1+xAlxTi2-x(PO4)3 solid electrolyte for all-solid-state lithium batteries. Adv Energy Mater 13(4):2203440. https://doi.org/10.1002/aenm.202203440

    Article  CAS  Google Scholar 

  18. Huang Y, Jiang Y, Zhou YX, Hu ZW, Zhu XH (2019) Influence of liquid solutions on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes. ChemElectroChem 6(24):6016–6026. https://doi.org/10.1002/celc.201901687

  19. Liu Y, Sun Q, Zhao Y, Wang B, Kaghazchi P, Adair KR, Li R, Zhang C, Liu J, Kuo L, Hu Y, Sham T, Zhang L, Yang R, Lu S, Song X, Sun X (2018) Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl Mater Inter 10(37):31240–31248. https://doi.org/10.1021/acsami.8b06366

    Article  CAS  Google Scholar 

  20. Porz L, Swamy T, Sheldon BW, Rettenwander D, Froemling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang Y (2017) Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater 7(20):1701003. https://doi.org/10.1002/aenm.201701003

    Article  CAS  Google Scholar 

  21. Xue Z, He D, Xie X (2015) Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 3(38):19218–19253. https://doi.org/10.1039/c5ta03471j

    Article  CAS  Google Scholar 

  22. Yu X, Manthiram A (2021) A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater 34:282–300. https://doi.org/10.1016/j.ensm.2020.10.006

    Article  Google Scholar 

  23. Liu L, Zhang D, Yang T, Hu W, Meng X, Mo J, Hou W, Fan Q, Liu K, Jiang B, Chu L, Li M (2022) Flexible ion-conducting membranes with 3D continuous nanohybrid networks for high-performance solid-state metallic lithium batteries. J Energy Chem 75:360–368. https://doi.org/10.1016/j.jechem.2022.08.036

    Article  CAS  Google Scholar 

  24. Hu Q, Sun Z, Nie L, Chen S, Yu J, Liu W (2022) High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries. Mater Today Energy 27:101052. https://doi.org/10.1016/j.mtener.2022.101052

    Article  CAS  Google Scholar 

  25. Roman HE (1990) A continuum percolation model for dispersed ionic conductors. J Phys Condens Matter 2(17):3909–3917. https://doi.org/10.1088/0953-8984/2/17/002

    Article  Google Scholar 

  26. Bonizzoni S, Ferrara C, Berbenni V, Anselmi-Tamburini U, Mustarelli P, Tealdi C (2019) NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries. Phys Chem Chem Phys 21(11):6142–6149. https://doi.org/10.1039/c9cp00405j

    Article  CAS  PubMed  Google Scholar 

  27. Zaman W, Hortance N, Dixit MB, De Andrade V, Hatzell KB (2019) Visualizing percolation and ion transport in hybrid solid electrolytes for Li-metal batteries. J Mater Chem A 7(41):23914–23921. https://doi.org/10.1039/C9TA05118J

    Article  CAS  Google Scholar 

  28. Song X, Zhang H, Jiang D, Yang L, Zhang J, Yao M, Ji X, Wang G, Zhang S (2021) Enhanced transport and favorable distribution of Li-ion in a poly(ionic liquid) based electrolyte facilitated by Li1.3Al0.3Ti1.7(PO4)3 nanoparticles for highly-safe lithium metal batteries. Electrochim Acta 368:137581. https://doi.org/10.1016/j.electacta.2020.137581

  29. Pan K, Zhang L, Qian W, Wu X, Dong K, Zhang H, Zhang S (2020) A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv Mater 32(17):2000399. https://doi.org/10.1002/adma.202000399

    Article  CAS  Google Scholar 

  30. Huang Y, Zhang Z, Gao H, Huang J, Li C (2020) Li1.5Al0.5Ti1.5(PO4)3 enhanced polyethylene oxide polymer electrolyte for all-solid-state lithium batteries. Solid State Ion 356:115437. https://doi.org/10.1016/j.ssi.2020.115437

  31. Ban X, Zhang W, Chen N, Sun C (2018) A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. J Phys Chem C 122(18):9852–9858. https://doi.org/10.1021/acs.jpcc.8b02556

    Article  CAS  Google Scholar 

  32. Méry A, Rousselot S, Lepage D, Aymé-Perrot D, Dollé M (2023) Limiting factors affecting the ionic conductivities of LATP/polymer hybrid electrolytes. Batteries 9(2):87. https://doi.org/10.3390/batteries9020087

    Article  CAS  Google Scholar 

  33. Shen C, Huang Y, Yang J, Chen M, Liu Z (2021) Unraveling the mechanism of ion and electron migration in composite solid-state electrolyte using conductive atomic force microscopy. Energy Storage Mater 39:271–277. https://doi.org/10.1016/j.ensm.2021.04.028

    Article  Google Scholar 

  34. Zagórski J, Amo JM, Cordill MJ, Aguesse F, Buannic L, Llordés A (2019) Garnet-polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes. ACS Appl Energy Mater 2(3):1734–1746. https://doi.org/10.1021/acsaem.8b01850

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Sichuan Science and Technology Program (Grant Nos. 2020YFH0047 and 2022ZYD0016) and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Qiaohong Yan: Investigation, Methodology, Data curation, Writing—original draft. Xing Cheng: Methodology, Data curation. Rentai Yan: Data curation. Xingrui Pu: Validation. Xiaohong Zhu: Supervision, Writing—review & editing, Resources, Funding acquisition.

Corresponding author

Correspondence to Xiaohong Zhu.

Ethics declarations

Ethics approval

This article does not involve any experiments with human participants or animal subjects.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 306 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Cheng, X., Yan, R. et al. An ameliorated interface between PEO electrolyte and Li anode by Li1.3Al0.3Ti1.7(PO4)3 nanoparticles. J Solid State Electrochem 28, 601–607 (2024). https://doi.org/10.1007/s10008-023-05712-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05712-6

Keywords

Navigation