Skip to main content
Log in

Modification of electrodes with self-assembled monolayers—general principles

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The paper provides a detailed overview of the scientific background, mostly published in 1970s–1990s, which resulted in tremendous success in preparation of modified electrodes, later used for bioelectrochemical, (bio)catalytic, photoelectrocatalytic, and other applications. The systems overviewed in the paper are focused on the chemisorption of sulfur-containing molecules (thiols, disulfides, sulfides, etc.). The self-assembling of these molecules at various metal (mostly Au and Pt) electrodes resulted in the formation of the well-structured monolayers, which allowed unique chemical and electrochemical features, not achievable by other modification techniques. Notably, the present paper is different from other typical reviews and books about chemically modified electrodes—it is not aimed at highlighting the recent achievements in the research area, but provides a detailed analysis of the area background produced about 30–50 years ago. While there are many reviews on the present state-of-the-art (mostly describing specific applications), the background of the research area is not well remembered, particularly by young researchers and students. Therefore, the paper is mainly aimed at educational aspects, rather than highlighting the modern applications, which are only briefly mentioned in the concluding section. The chemical structures exemplified in the paper represent a comprehensive collection of the systems produced by the self-assembling method developed a few decades ago.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alkire RC, Kolb DM, Lipkowski J, Ross PN (2009) Chemically Modified Electrodes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Snell KD, Keenan AG (1979) Surface modified electrodes. Chem Soc Rev 8:259–282

    Article  CAS  Google Scholar 

  3. Murray RW (1980) Chemically modified electrodes. Acc Chem Res 13:135–141

    Article  CAS  Google Scholar 

  4. Albery WJ, Hillman AJ (1981) Modified electrodes Annu Repts Progr Chem C78:377–437

    Article  Google Scholar 

  5. Johnson DC, Ryan MD, Wilson GS (1986) Dynamic electrochemistry: Methodology and application. Anal Chem 58:33R-49R

    Article  CAS  Google Scholar 

  6. Murray RW, Ewing AG, Durst RA (1987) Chemically modified electrodes. Molecular design for electrocatalysis Anal Chem 59:379A-390A

    CAS  Google Scholar 

  7. Linford RG (ed) (1987) Electrochemical science and technology of polymers. Elsevier, New York

    Google Scholar 

  8. Murray RW (1984) Polymer modification of electrodes. Ann Rev Mater Sci 14:145–169

    Article  CAS  ADS  Google Scholar 

  9. Degrand C (1985) Electron-transfer in quinonoid modified electrodes—mediated and catalytic applications. Annali Chimica 75:1–18

    CAS  Google Scholar 

  10. Tarasevich MR (1984) Electrochemistry of carbon materials. Nauka, Moscow (in Russian)

    Google Scholar 

  11. Zak J, Kuwana T (1983) Chemically modified electrodes and electrocatalysis. J Electroanal Chem 150:645–664

    Article  CAS  Google Scholar 

  12. Gorton L (1986) Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes. J Chem Soc Faraday Trans 1(82):1245–1258

    Article  Google Scholar 

  13. Katz E, Shkuropatov AY, Shuvalov VA (1990) Electrochemical approach to the development of a photoelectrode on the basis of photosynthetic reaction centers. Bioelectrochem Bioenerg 23:239–247

    Article  CAS  Google Scholar 

  14. Armstrong FA, Hill HAO, Walton NJ (1986) Reactions of electron-transfer proteins at electrodes. Q Rev Biophys 18:261–322

    Article  Google Scholar 

  15. Armstrong FA, Hill HAO, Walton NJ (1988) Direct electrochemistry of redox proteins. Acc Chem Res 21:407–413

    Article  CAS  Google Scholar 

  16. Frew JE, Hill HAO (1988) Direct and indirect electron transfer between electrodes and redox proteins. Eur J Biocriem 172:261–269

    Article  CAS  Google Scholar 

  17. Cardosi FM, Turner APF (1987) The realization of electron transfer from biological molecules to electrodes. in: Turner APF, Karube I, Wilson GS (Eds.), Biosensors. Fundamentals and Applications, Chapter 15, 257–275, Oxford University Press, Oxford.

  18. Frew JE, Hill HAO (1987/1988) Electrochemical biosensors. Anal Chem 59:933A–944.

  19. Ciucu AA (2014) Chemically modified electrodes in biosensing. J Biosens Bioelectron 5:154

    Google Scholar 

  20. Bartlett PN, Whitaker RG (1987/1988) Strategies for the development of amperometric enzyme electrodes. Biosensors 3:359–379.

  21. Bollella P, Katz E (2020) Biosensors—recent advances and future challenges. Sensors (MDPI) 20:6645

    Article  ADS  Google Scholar 

  22. Smutok O, Katz E (2023) Biosensors: electrochemical devices—general concepts and performance. Biosensors (MDPI) 13:44

    Article  CAS  Google Scholar 

  23. Katz E, Bollella P (2021) Fuel cells and biofuel cells: from past to perspectives. Isr J Chem 61:68–84

    Article  CAS  Google Scholar 

  24. Bain CD, Whitesides GM (1989) Modeling organic surfaces with self-assemble monolayers. Angew Chem Adv Mater 101:522–528

    Article  CAS  ADS  Google Scholar 

  25. Ulman A (1991) An introduction to ultrathin organic films, From Langmuir-Blodgett to self-assembly, Academic Press, Boston

  26. Brown AP, Anson FC (1977) Molecular anchors for the attachment of metal complexes to graphite electrode surfaces. J Electroanal Chem 83:203–206

    CAS  Google Scholar 

  27. Lane RF, Hubbard AT (1973) Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents. J Phys Chem 77:1401–1410

    Article  CAS  Google Scholar 

  28. Lane RF, Hubbard AT (1973) Electrochemistry of chemisorbed molecules. I I. The influence of charged chemisorbed molecules on the electrode reactions of platinum complexes. J Phys Chem 77:1411–1421

    Article  CAS  Google Scholar 

  29. Mazur S, Matusinovic T, Cammann K (1977) Organic reactions of oxide-free carbon surfaces, an electroactive derivative. J Am Chem Soc 99:3888–3890

    Article  CAS  Google Scholar 

  30. Allen PM, Hill HAO, Walton NJ (1984) Surface modifiers for the promotion of direct electrochemistry of cytochrome c. J Electroanal Chem Interfac Electrochem 178:69–86

    Article  CAS  Google Scholar 

  31. Bain CD, Evall J, Whitesides GM (1989) Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J Am Chem Soc 111:7155–7164

    Article  CAS  Google Scholar 

  32. Hickman JJ, Zou C, Ofer D, Harvey PD, Wrighton MS (1989) Combining spontaneous molecular assembly with microfabrication to pattern surfaces: selective binding of isonitriles to platinum microwires and characterization by electrochemistry and surface spectroscopy. J Am Chem Soc 111:7271–7272

    Article  CAS  Google Scholar 

  33. Hickman JJ, Laibinis PE, Auerbach DI, Zou C, Gardner TJ, Whitesides GM, M.S. Wrighton MS, (1992) Toward orthogonal self-assembly of redox active molecules on Pt and Au: selective reaction of disulfide with Au and isocyanide with Pt. Langmuir 8:357–359

    Article  CAS  Google Scholar 

  34. Bain CD, Troughton EB, Tao Y-T, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335

    Article  CAS  Google Scholar 

  35. Nuzzo RG, Fusco FA, Allara DL (1987) Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. J Am Chem Soc 109:2358–2368

    Article  CAS  Google Scholar 

  36. Troughton EB, Bain CD, Whitesides GM, Nuzzo RG, Allara DL, Porter MD (1988) Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: Structure, properties, and reactivity of constituent functional Groups. Langmuir 4:365–385

    Article  CAS  Google Scholar 

  37. Arduengo AJ, Moran JR, Rodriguez-Parada J, Ward MD (1990) Molecular control of self-assembled monolayer films of imidazole-2-thiones: adsorption and reactivity. J Am Chem Soc 112:6153–6154

    Article  CAS  Google Scholar 

  38. Gui JY, Stern DA, Lu F, Hubbard AT (1991) Surface chemistry of five-membered heteroaromatics at Pt(111) electrodes studied by EELS, LEED, Auger spectroscopy and electrochemistry : furan, pyrrole and thiophene. J Electroanal Chem Interfac Electrochem 305:37–55

    Article  CAS  Google Scholar 

  39. Datta D, Hill HAO, Nakayama H (1991) Electrochemistry of spinach plastocyanin immobilized electrostatically at a gold electrode modified by [Cr(NH3), NCS]2+ J Electroanal Chem 297:309–314.

  40. Soriaga MP, Binamira-Soriaga E, Hubbard AT, Benziger JB, Pang K-WP (1985) Surface coordination chemistry of platinum studied by thin-layer electrodes. Adsorption, orientation, and mode of binding of aromatic and quinonoid compounds. Inorg Chem 24:65–73

    Article  CAS  Google Scholar 

  41. Katz E, Solov’ev AA (1990) Chemical modification of platinum and gold electrodes by naphthoquinones using amines containing sulphhydryl or disulphide groups. J Electroanal Chem 291:171–186

    Article  CAS  Google Scholar 

  42. Nuzzo RG, Zegarski BR, Dubois LH (1987) Fundamental studies of the chemisorption of organosulfur compounds on Au(111). Implications for molecular self-assembly on gold surfaces. J Am Chem Soc 109:733–740

    Article  CAS  Google Scholar 

  43. Nuzzo RG, Dubois LH, Allara DL (1990) Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J Am Chem Soc 112:558–569

    Article  CAS  Google Scholar 

  44. Walczak MM, Chung C, tole SM, Widrig OA, Porter MD, (1991) Structure and interfacial properties of spontaneously adsorbed n-alkanethiolate monolayers on evaporated silver surfaces. J Am Chem Soc 113:2370–2378

    Article  CAS  Google Scholar 

  45. Taniguchi I, Iseki M, Yamaguchi H, Yasukouchi K (1985) Surface enhanced Raman scattering from bis(4-pyridyl)-disulfide- and 4,4’-bipyridine-modified gold electrodes. J Electroanal Chem 186:299–307

    Article  CAS  Google Scholar 

  46. Bain CD, Biebuyck HA, Whitesides GM (1989) Comparison of self -assembled monolayers on gold: coadsorption of thiols and disulfides. Langmuir 5:723–727

    Article  CAS  Google Scholar 

  47. Taniguchi I, Iseki M, Yamaguchi H, Yasukouchi K (1984) Surface enhanced Raman scattering study of hors heart cytochrome c at a silver electrode in the presence of bis(4-pyridyl)disulfide and purine. J Electroanal Chem 175:341–348

    Article  CAS  Google Scholar 

  48. Gui JY, Stern DA, Frank DG, Lu F, Zapien DC, Hubbard AT (1991) Adsorption and surface structural chemistry of thiophenol, benzyl mercaptan, and alkyl mercaptans. Comparative studies at Ag(111) and Pt(111) electrodes by means of Auger spectroscopy, electron energy loss spectroscopy, low-energy electron diffraction, and electrochemistry. Langmuir 7:955–963

    Article  CAS  Google Scholar 

  49. Gui JY, Stern DA, Hubbard AT (1990) Surface chemistry of mercaptopyridines at Ag(111) electrodes studied by EELS, LEED, Auger spectroscopy and electrochemistry. J Electroanal Chem 292:245–262

    Article  CAS  Google Scholar 

  50. Evans SD, Ulman A (1990) Surface potential studies of alkyl-thiol monolayers adsorbed on gold. Chem Phys Lett 170:462–466

    Article  CAS  ADS  Google Scholar 

  51. Widrig CA, Chung C, Porter MD (1991) The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes. J Electroanal Chem 310:335–359

    Article  CAS  Google Scholar 

  52. Bryant MA, Pemberton JE (1991) Surface Raman scattering of self-assembled monolayers formed from 1-alkanethiols at Ag. J Am Chem Soc 113:3629–3637

    Article  CAS  Google Scholar 

  53. Bryant MA, Pemberton JE (1991) Surface Raman scattering of self-assembled monolayers formed from 1-alkanethiols: behavior of films at Au and comparison to films at Ag. J Am Chem Soc 113:8284–8293

    Article  CAS  Google Scholar 

  54. Bain CD, Whitesides GM (1988) Correlations between wettability and structure in monolayers of alkanethiols adsorbed on gold. J Am Chem Soc 110:3665–3666

    Article  CAS  Google Scholar 

  55. Bain CD, Whitesides GM (1988) Formation of two-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols. J Am Chem Soc 110:6560–6561

    Article  CAS  Google Scholar 

  56. Bain CD, Whitesides GM (1988) Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 240:62–63

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Bain CD, Whitesides GM (1989) A study by contact angle of the acid-base behavior of monolayers containing ω-mercaptocarboxylic acids adsorbed on gold: an example of reactive spreading. Langmuir 5:1370–1378

    Article  CAS  Google Scholar 

  58. Stern DA, Wellner E, Salaita GN, Laguren-Davidson L, Lu F, Batina N, Frank DG, Zapien DC, Walton N, Hubbard AT (1988) Adsorbed thiophenol and related compounds studied at Pt(111) electrodes by EELS, Auger spectroscopy, and cyclic voltammetry. J Am Chem Soc 110:4885–4893

    Article  CAS  Google Scholar 

  59. Batina N, Frank DG, Gui JY, Kahn BE, Lin C-H, Lu F, McCargar JW, Salaita GN, Stern DA, Zapien DC, Hubbard AT (1989) Oriented adsorption at well-defined electrode surfaces studied by Auger, LEED, and EELS spectroscopy. Electrochim Acta 34:1031–1044

    Article  Google Scholar 

  60. Lee KAB (1990) Electron transfer into self-assembling monolayers on gold electrodes. Langmuir 6:709–712

    Article  CAS  Google Scholar 

  61. Katz E, Borovkov VV, Evstigneeva RP (1992) Application of quinone thio derivatives as a basis for assembling complex molecular systems at an electrode surface. J Electroanal Chem 320:197–212

    Article  Google Scholar 

  62. Stickney JL, Soriaga MP, Hubbard AT, Anderson SE (1981) A survey of factors influencing the stability of organic functional groups attached to platinum electrodes. J Electroanal Chem 125:73–88

    Article  CAS  Google Scholar 

  63. Soriaga MP, White JH, Song D, Chia VKF, Arrhenius PO, Hubbard AT (1985) Surface coordination chemistry of platinum studied by thin-layer electrodes. Surface chemical reactivity of aromatic and quinonoid compounds adsorbed in specific orientational states. Inorg Chem 24:73–79

    Article  CAS  Google Scholar 

  64. Pinheiro LS, Temperini MLA (1990) SERS effect of pyridine-n-aIdehyde thiosemicarbazone on a silver electrode. J Electroanal Chem 295:169–181

    Article  CAS  Google Scholar 

  65. Fenter P, Eisenberger P, Li J, Camillone N, Bernasek S, Scoles G, Ramanarayanan TA, Liang KS (1991) Structure of CH3(CH2)17SH self-assembled on the Ag(111) surface: an incommensurate monolayer. Langmuir 7:2013–2016

    Article  CAS  Google Scholar 

  66. Laibinis PE, Bain CD, Whitesides GM (1991) Attenuation of photoelectrons in monolayers of n-alkanethiols adsorbed on copper, silver, and gold. J Phys Chem 95:7017–7021

    Article  CAS  Google Scholar 

  67. Laibinis PE, Whitesides GM, Allara DL, Tao Y-T, Parikh AN, Nuzzo RG (1991) Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces Cu, Ag, Au. J Am Chem Soc 113:7152–7167

    Article  CAS  Google Scholar 

  68. Laibinis PE, Whitesides GM (1992) ω-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities. J Am Chem Soc 114:1990–1995

    Article  CAS  Google Scholar 

  69. Bothwell ME, Soriaga MP (1990) Reversible redox chemistry, hydrodesulfurization, and anodic oxidation of thiophenols chemisorbed at smooth polycrystalline iridium electrodes. J Electroanal Chem 295:123–138

    Article  CAS  Google Scholar 

  70. Reynders B, Stratmann M (1991) Adsorption of simple S-organic compounds on iron surfaces prepared in an UHV-system. Fresenius J Anal Chem 341:406–407

    Article  CAS  Google Scholar 

  71. Li TT-T, Weaver MJ (1984) Intramolecular electron transfer at metal surfaces. 4. Dependence of tunneling probability upon donor-acceptor separation distance. J Am Chem Soc 106:6107–6108

    Article  CAS  Google Scholar 

  72. Li TT-T, Weaver MJ (1985) Intramolecular electron transfer at metal surfaces. Part V. Thiocarboxylate-bridged cobalt (III) reduction kinetics at mercury and gold electrodes. J Electroanal Chem 188:121–129

    Article  CAS  Google Scholar 

  73. Weaver MJ, Li TT-T (1986) Rate-structure dependencies for intramolecular electron transfer via organic anchoring groups at metal surfaces. J Phys Chem 90:3823–3829

    Article  CAS  Google Scholar 

  74. Sheen CW, Shi J-X, Martensson J, Parikh AN, Allara DL (1992) A new class of organized self- assembled monolayers: alkane thiols on GaAs (100). J Am Chem Soc 114:1514–1515

    Article  CAS  Google Scholar 

  75. Nordyke LL, Buttry DA (1991) Redox surfactants are chemical probes of electrode surface functionalization derived from disulfide immobilization on gold. Langmuir 7:380–388

    Article  CAS  Google Scholar 

  76. Widrig CA, Alves CA, Porter MD (1991) Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously adsorbed at gold surfaces. J Am Chem Soc 113:2805–2810

    Article  CAS  Google Scholar 

  77. Laibinis PE, Fox MA, Folkers JP, Whitesides GM (1991) Comparisons of self-assembled monolayers on silver and gold: mixed monolayers derived from HS(CH2)21X and HS(CH2)10Y (X, Y = CH3, CH2OH) have similar properties. Langmuir 7:3167–3173

    Article  CAS  Google Scholar 

  78. Tornkvist C, Liedberg B, Lundstrom I (1991) Infrared study of N-methylacetamide on clean and chemically modified surfaces. Langmuir 7:479–485

    Article  Google Scholar 

  79. Hickman JJ, Ofer D, Zou C, Wrighton MS, Laibinis PE, Whitesides GM (1991) Selective functionalization of gold microstructures with ferrocenyl derivatives via reaction with thiols or disulfides: characterization by electrochemistry and Auger electron spectroscopy. J Am Chem Soc 113:1128–1132

    Article  CAS  Google Scholar 

  80. Finklea HO, Avery S, Lynch M (1987) Blocking oriented monolayers of alkyl mercaptans on gold electrodes. Langmuir 3:409–413

    Article  CAS  Google Scholar 

  81. Hinnen C, Niki K (1989) Roles of 4,4’-bipyridyl and bis(4-pyridyl) disulphide in the redox reaction of cytochrome c adsorbed on a gold electrode. Spectroelectrochemical studies J Electroanal Chem 264:157–165

    Article  CAS  Google Scholar 

  82. Ramos NC, Medlin JW, Holewinski A (2023) Electrochemical stability of thiolate self-assembled monolayers on Au, Pt, and Cu. ACS Appl Mater Interfaces 15:14470–14480

    CAS  Google Scholar 

  83. Walczak MM, Popenoe DD, Deinhammer RS, Lamp BD, Chung C, Porter MD (1991) Reductive desorption of alkanethiolate monolayers at gold: a measure of surface coverage. Langmuir 7:2687–2693

    Article  CAS  Google Scholar 

  84. Vieira KL, Zapien DC, Soriaga MP, Hubbard AT, Low KP, Anderson SE (1986) Analysis of products from reactions of chemisorbed monolayers at smooth platinum electrodes: electrochemical hydrodesulfurization of thiophenol derivatives. Anal Chem 58:2964–2968

    Article  CAS  Google Scholar 

  85. Tanimu A, Alhooshani K (2019) Advanced hydrodesulfurization catalysts: a review of design and synthesis. Energy Fuels 33:2810–2838

    Article  CAS  Google Scholar 

  86. Li Y, Huang J, McIver RT, Hemminger JC (1992) Characterization of thiol self-assembled films by laser desorption Fourier transform mass spectrometry. J Am Chem Soc 114:2428–2432

    Article  CAS  Google Scholar 

  87. Chidsey CED, Bertozzi CR, Putvinski TM, Mujsce AM (1990) Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers. J Am Chem Soc 112:4301–4306

    Article  CAS  Google Scholar 

  88. Collard DM, Fox MA (1991) Use of electroactive thiols to study the formation and exchange of alkanethiol monolayers on gold. Langmuir 7:1192–1197

    Article  CAS  Google Scholar 

  89. Hill HAO, Page DJ, Walton NJ (1987) Direct electrochemistry of bacterial cytochrome c551 at surface-modified gold electrodes. J Electroanal Chem 217:129–140

    Article  CAS  Google Scholar 

  90. Aloni S, Altoe V, Katan A, Martin F, Salmeron M (2012) Scanned electron diffraction studies of self-assembled monolayers. Microscopy Microanalysis 18:1600–1601

    Article  ADS  Google Scholar 

  91. Strong L, Whitesides GM (1988) Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 4:546–558

    Article  CAS  Google Scholar 

  92. Chidsey OED, Loiacono DN (1990) Chemical functionality in self-assembled monolayers: structural and electrochemical properties. Langmuir 6:682–691

    Article  CAS  Google Scholar 

  93. Chidsey OED, Liu G-Y, Rowntree P, Scoles G (1989) Molecular order at the surface of an organic monolayer studied by low energy helium diffraction. J Chem Phys 91:4421–4423

    Article  CAS  ADS  Google Scholar 

  94. Alves CA, Smith EL, Porter MD (1992) Atomic scale imaging of alkanethiolate monolayers at gold surfaces with atomic force microscopy. J Am Chem Soc 114:1222–1227

    Article  CAS  Google Scholar 

  95. Porter MD, Bright TB, Allara DL, Chidsey OED (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc 109:3559–3568

    Article  CAS  Google Scholar 

  96. Dubois LH, Zegarski BR, Nuzzo RG (1987) Fundamental studies of the interactions of adsorbates on organic surfaces. Proc Natl Acad Sci USA 84:4739–4742

    Article  CAS  PubMed Central  ADS  Google Scholar 

  97. Samant MG, Brown CA, Gordon JG (1991) Structure of an ordered self-assembled monolayer of docosyl mercaptan on gold(11 1) by surface X-ray diffract ion. Langmuir 7:437–439

    Article  CAS  Google Scholar 

  98. Sandroff OJ, Garoff S, Leung KP (1983) Surface-enhanced Raman study of the solid/liquid interface: conformational changes in adsorbed molecules. Chem Phys Lett 96:547–551

    Article  CAS  ADS  Google Scholar 

  99. Barner BJ, Corn RM (1990) Electrochemical and vibrational spectroscopic studies of coadsorption: Formation of mixed monolayers of methylene blue and long-chain dithioethers at sulfur-modified polycrystalline gold surfaces. Langmuir 6:1023–1030

    Article  CAS  Google Scholar 

  100. Bain CD, Whitesides GM (1989) Attenuation lengths of photoelectrons in hydrocarbon films. J Phys Chem 93:1670–1673

    Article  CAS  Google Scholar 

  101. Evans SD, Urankar E, Ulman A, Ferris N (1991) Self-assembled monolayers of alkanethiols containing a polar aromatic group: effects of the dipole position on molecular packing, orientation, and surface wetting properties. J Am Chem Soc 113:4121–4131

    Article  CAS  Google Scholar 

  102. Evans SD, Goppert-Berarducci KE, Urankar E, Gerenser LJ, Ulman A, Snyder RG (1991) Monolayers having large in-plane dipole moments: characterization of sulfone-containing self-assembled monolayers of alkanethiols on gold by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and wetting. Langmuir 7:2700–2709

    Article  CAS  Google Scholar 

  103. Ulman U (1991) Thermal stability of Langmuir-Blodgett and self-assembled films: a possible scenario for order-disorder transitions. Adv Mater 3:298–303

    Article  CAS  Google Scholar 

  104. Ulman A, Eilers JE, Tillman N (1989) Packing and molecular orientation of alkanethiol monolayers on gold surfaces. Langmuir 5:1147–1152

    Article  CAS  Google Scholar 

  105. Bain CD, Whitesides GM (1989) Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain. J Am Chem Soc 111:7164–7175

    Article  CAS  Google Scholar 

  106. Evans SD, Sharma R, Ulman A (1991) Contact angle stability: reorganization of monolayer surfaces? Langmuir 7:156–161

    Article  CAS  Google Scholar 

  107. Christensen PA, Hamnett A, Blackham I (1991) The potential-dependent reorientation of adsorbed thiopyridine at a gold electrode in phosphate buffer. J Electroanal Chem 318:407–410

    Article  CAS  Google Scholar 

  108. Kwan WSV, Penneau JF, Miller LL (1990) ESR and electrochemical studies of self assembled oligoimide monolayers on gold. J Electroanal Chem 291:295–299

    Article  CAS  Google Scholar 

  109. Kwan WSV, Atanasoska L, Miller LL (1991) Oligoimide monolayers covalently attached to gold. Langmuir 7:1419–1425

    Article  CAS  Google Scholar 

  110. Bain CD, Whitesides GM (1988) Depth sensitivity of wetting: monolayers of ω-mercapto ethers on gold. J Am Chem Soc 110:5897–5898

    Article  CAS  Google Scholar 

  111. Dubois LH, Zegarski BR, Nuzzo RG (1990) Fundamental studies of microscopic wetting on organic surfaces. 2. Interaction of secondary adsorbates with chemically textured organic monolayers. J Am Chem Soc 112:570–579

    Article  CAS  Google Scholar 

  112. Ulman A, Evans SD, Shnidman Y, Sharma R, Eilers JE, Chang JC (1991) Concentration-driven surface transition in the wetting of mixed alkanethiol monolayers on gold. J Am Chem Soc 113:1499–1506

    Article  CAS  Google Scholar 

  113. Gleria KD, Hill HAO, Lowe VJ, Page DJ (1986) Direct electrochemistry of horse-heart cytochrome c at amino acid-modified gold electrodes. J Electroanal Chem 213:333–338

    Article  Google Scholar 

  114. Bagby S, Barker PD, Gleria KD, Hill HAO, Lowe VJ (1988) The direct electrochemistry of cytochrome b5 at peptide-modified gold electrodes. Biochem Soc Trans 16:958–959

    Article  CAS  Google Scholar 

  115. Ikeshoji T, Taniguchi I, Hawkridge FM (1989) Electrochemically distinguishable states of ferricytochrome c and their transition with changes in temperature and pH. J Electroanal Chem 270:297–308

    Article  CAS  Google Scholar 

  116. Horanyi G (1990) Radiotracer study of the potential dependence of the adsorption of L-methionine at a platinized platinum electrode. J Electroanal Chem 280:425–427

    Article  CAS  Google Scholar 

  117. Balachander N, Sukenik CN (1990) Monolayer transformation by nucleophilic substitution: Applications to the creation of new monolayer assemblies. Langmuir 6:1621–1627

    Article  CAS  Google Scholar 

  118. West AR (2014) Solid state chemistry and its applications. Wiley, Hoboken

    Google Scholar 

  119. Chauhan NPS (ed) (2021) Functionalized polymers: synthesis, characterization and applications. CRC Press, Boca Raton

    Google Scholar 

  120. Stutts KJ, Wrighton RM (1983) Electrocatalysis of ascorbate oxidation with electrosynthesized, surface-bound mediators. Anal Chem 55:1576–5879

    Article  CAS  Google Scholar 

  121. Fujihira M, Kubota T, Osa T (1981) Organo-modified metal electrode. Part V. Efficiency of electron injection into conduction band from photo-excited dye molecule covalently attached to an SnO2 surface. J Electroanal Chem 119:379–387

    Article  CAS  Google Scholar 

  122. Lenhard JR, Murray RW (1977) Chemical modified electrodes. Part VII. Covalent bonding of a reversible electrode reactant to Pt electrodes using an organosilane reagent. J Electroanal Chem 78:195–201

    Article  CAS  Google Scholar 

  123. Itaya K, Bard AJ (1978) Chemically modified polymer electrodes: synthetic approach employing poly(methacryl chloride) anchors. Anal Chem 50:1487–1489

    Article  CAS  Google Scholar 

  124. Katz E, Solov’ev AA (1989) Chemically modified electrode with affinity to sulfhydryl compounds. J Electroanal Chem 261:217–222

    Article  CAS  Google Scholar 

  125. Osa T, Fujihira M (1976) Photocell using covalently-bound dyes on semiconductor surfaces. Nature 264:349–350

    Article  CAS  ADS  Google Scholar 

  126. Lenhard JR, Murray RW (1978) Chemically modified electrodes. 13. Monolayer/multilayer coverage, decay kinetics, and solvent and interaction effects for ferrocenes covalently linked to platinum electrodes. J Am Chem Soc 100:7870–7875

    Article  CAS  Google Scholar 

  127. Haller I (1978) Covalently attached organic monolayers on semiconductor surfaces. J Am Chem Soc 100:8050–8855

    Article  CAS  Google Scholar 

  128. Fox MA, Nobs FJ, Voynick YA (1980) Covalent attachment of arenes to SnO2-semiconductor Electrodes. J Am Chem Soc 102:4029–4036

    Article  CAS  Google Scholar 

  129. Miwa T, Jin L-T, Mizuike A (1984) Differential-pulse anodic stripping voltammetry of copper with a chemically-modified glassy carbon electrode. Anal Chim Acta 160:135–140

    Article  CAS  Google Scholar 

  130. Katz E, Schlereth DD, Schmidt H-L (1994) Electrochemical study of pyrroloquinoline quinone covalently immobilized as monolayer onto a cystamine modified gold electrode. J Electroanal Chem 367:59–70

    Article  CAS  Google Scholar 

  131. White HS, Murray RW (1979) Fluorescence and X-ray photoelectron spectroscopy surface analysis of metal oxide electrodes chemically modified with dansylated alkylaminesilanes. Anal Chem 51:236–239

    Article  CAS  Google Scholar 

  132. Shepard VR, Armstrong NR (1979) Electrochemical and photoelectrochemical studies of copper and cobalt phthalocyanine-tin oxide electrodes. J Phys Chem 83:1268–1276

    Article  CAS  Google Scholar 

  133. Armstrong NR, Shepard VR (1980) Voltammetric studies of silane-modified SnO2 surfaces in selected aqueous and non-aqueous media. J Electroanal Chem 115:253–265

    Article  CAS  Google Scholar 

  134. Yamamoto N, Nagasawa Y, Shuto S, Tsubomura H (1981) Potentiometric and spectroscopic investigations of the reaction of fluorescein isothiocyanate with an amine chemically bound on solid surfaces. Bull Chem Soc Jap 54:323–326

    Article  CAS  Google Scholar 

  135. Sharp M, Petersson M, Edstrom K (1979) Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J Electroanal Chem 95:123–130

    Article  CAS  Google Scholar 

  136. Sharp M, Petersson M (1981) Voltammetric determinations of surface charge-transfer kinetics for platinum-ferrocene chemically modified electrodes in sulpholane. J Electroanal Chem 122:409–415

    Article  CAS  Google Scholar 

  137. Price JF, Baldwin RP (1980) Preconcentration and determination of ferrocenecarboxaldehyde at a chemically modified platinum electrode. Anal Chem 52:1940–1944

    Article  CAS  Google Scholar 

  138. Hupp JT, Weaver MJ (1984) Utility of surface reaction entropies for examining reactant-solvent interactions at electrochemical interfaces. Ferricinium-ferrocene attached to platinum electrodes. J Electrochem Soc 131:619–622

    Article  CAS  Google Scholar 

  139. Bataillard P, Gardies F, Jaffrezic-Renault N, Martelet C, Collin B, Mandrand B (1988) Direct detection of immunospecies by capacitance measurements. Anal Chem 60:2374–2379

    Article  CAS  PubMed  Google Scholar 

  140. Gardies F, Jaffrezic-Renault N, Martelet C, Perrot H, Valeton J-M, Alegret S (1990) Micro-enzyme field effect transistor sensor using direct covalent bonding of urease. Anal Chim Acta 231:305–308

    Article  CAS  Google Scholar 

  141. Shu FR, Wilson GS (1976) Rotating ring-disk enzyme electrode for surface catalysis studies. Anal Chem 48:1679–1686

    Article  CAS  PubMed  Google Scholar 

  142. Katz E, Schmidt H-L (1994) Gold electrode modification with a monolayer of 1,4,5,8-naphthalenetetrone as a four-electron transfer mediator: electrochemical reduction of dioxygen to water. J Electroanal Chem 368:87–94

    Article  CAS  Google Scholar 

  143. Katz E, Shkuropatov AY, Vagabova OI, Shuvalov VA (1989) Chemical modification of the PtO electrode by naphthoquinone using aminosilane. J Electroanal Chem 260:53–62

    Article  Google Scholar 

  144. Katz E, Shkuropatov AY, Vagabova OI, Shuvalov VA (1989) Coupling of photoinduced charge separation in reaction centers of photosynthetic bacteria with electron transfer to a chemically modified electrode. Biochim Biophys Acta 976:121–128

    Article  Google Scholar 

  145. Katz E, Schmidt H-L (1993) Gold electrode modification with a monolayer of molecular lines consisting of electron carriers with different potentials. J Electroanal Chem 360:337–342

    Article  CAS  Google Scholar 

  146. Katz E, Solov’ev AA (1992) Photobioelectrodes on the basis of photosynthetic reaction centers. Study of exogenous quinones as possible electron transfer mediators. Anal Chim Acta 266:97–106

    Article  Google Scholar 

  147. Solov’ev AA, Katz E, Shuvalov VA, Erokhin YE (1991) Photoelectrochemical effects for chemically modified platinum electrodes with immobilized reaction centers from Rhodobacter sphaeroides R-26. Bioelectrochem Bioenerg 26:29–41

    Article  CAS  Google Scholar 

  148. Solov’ev AA, Katz E (1990) Why is covalent immobilization of quinones possible at electrodes via aminosilanes? J Electroanal Chem 277:337–339

    Article  CAS  Google Scholar 

  149. Mann-Buxbaum E, Pittner F, Schalkhammer T, Jachimowicz A, Jobst G, Olcaytug F, Urban G (1990) New microminiaturized glucose sensors using covalent immobilization techniques. Sens Actuat B1:518–522

    Article  Google Scholar 

  150. Bodnarchuk MS, Doncom KEB, Wright DB, Heyes DM, Dini D, O’Reilly RK (2017) Polyelectrolyte pKa from experiment and molecular dynamics simulation. RSC Adv 7:20007–20014

    Article  CAS  ADS  Google Scholar 

  151. Patai S, Rappoport Z (1988) The chemistry of the quinonoid compounds. Wiley-VCH, Weinheim

    Google Scholar 

  152. Willner I, Katz E (2000) Integration of layered redox-proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218

    Article  CAS  Google Scholar 

  153. Jadhav SA (2011) Self-assembled monolayers (SAMs) of carboxylic acids: an overview. Cent Eur J Chem 9:369–378

    CAS  Google Scholar 

  154. Tanimura R, Hill MG, Margoliash E, Niki K, Ohno H, Gray HB (2002) Active carboxylic acid-terminated alkanethiol self-assembled monolayers on gold bead electrodes for immobilization of cytochromes c. Electrochem Solid-State Lett 5:E67

    Article  CAS  Google Scholar 

  155. Duevel RV, Corn RM (1992) Amide and ester surface attachment reactions for alkanethiol monolayers at gold surfaces as studied by polarization modulation Fourier transform infrared spectroscopy. Anal Chem 64:337–342

    Article  CAS  Google Scholar 

  156. Oyama N, Brown AP, Anson FC (1978) Introduction of amine functional groups on graphite electrode surfaces and their use in the attachment of rythenium (II) to the electrode surface. J Electroanal Chem 87:435–441

    Article  CAS  Google Scholar 

  157. Oyama N, Anson FC (1979) Ligand substitution kinetics on ethylenediaminetetraacetato complexes of ruthenium(II) and ruthenium(III) covalently attached to graphite surfaces. J Am Chem Soc 101:1634–1635

    Article  CAS  Google Scholar 

  158. Koval CA, Anson FC (1978) Electrochemistry of the ruthenium(3+,2+) couple attached to graphite electrodes. Anal Chem 50:223–229

    Article  CAS  Google Scholar 

  159. Sun L, Thomas RC, Crooks RM, Ricco AJ (1991) Real-time analysis of chemical reactions occurring at a surface-confined organic monolayer. J Am Chem Soc 113:8550–8552

    Article  CAS  Google Scholar 

  160. Wirde M, Gelius U, Nyholm L (1999) Self-assembled monolayers of cystamine and cysteamine on gold studied by XPS and voltammetry. Langmuir 15:6370–6378

    Article  CAS  Google Scholar 

  161. Diem T, Czajka B, Weber B, Regen SL (1986) Spontaneous assembly of phospholipid monolayers via adsorption onto gold. J Am Chem Soc 108:6094–6095

    Article  CAS  PubMed  Google Scholar 

  162. Bilewicz R, Majda M (1991) Monomolecular Langmuir-Blodgett films at electrodes. Formation of passivating monolayers and incorporation of electroactive reagents. Langmuir 7:2794–2802

    Article  CAS  Google Scholar 

  163. Miller C, Cuendet P, Gratzel M (1991) Adsorbed ω-hydroxy thiol monolayers on gold electrodes: Evidence for electron tunneling to redox species in solution. J Phys Chem 95:877–886

    Article  CAS  Google Scholar 

  164. Miller C, Gratzel M (1991) Electrochemistry at ω-hydroxy thiol coated electrodes. 2. Measurement of the density of electronic states distributions for several outer-sphere redox couples. J Phys Chem 95:5225–5233

    Article  CAS  Google Scholar 

  165. Becka M, Miller C (1992) Electrochemistry at ω-hydroxy thiol coated electrodes. 3. Voltage independence of the electron tunneling barrier and measurements of redox kinetics at large overpotentials. J Phys Chem 96:2657–2668

    Article  CAS  Google Scholar 

  166. Creager E, Collard DM, Fox MA (1990) Mediated electron transfer by a surfactant viologen bound to octadecanethiol on gold. Langmuir 6:1617–1620

    Article  CAS  Google Scholar 

  167. Hong H-G, Mallouk TE (1991) Electrochemical measurements of electron transfer rates through zirconium 1,2-ethanediylbis(phosphonate) multilayer films on gold electrodes. Langmuir 7:2362–2369

    Article  CAS  Google Scholar 

  168. Sabatani E, Rubinstein I (1987) Organized self-assembling monolayers on electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very rapid electrode kinetics. J Phys Chem 91:6663–6669

    Article  CAS  Google Scholar 

  169. Sabatani E, Rubinstein I, Maoz R, Sagiv J (1987) Organized self-assembling monolayers on electrodes. Part I. Octadecyl derivatives on gold. J Electroanal Chem 219:365–371

    Article  CAS  Google Scholar 

  170. Finklea HO, Shider DA, Fedyk J (1990) Passivation of pinholes in octadecanethiol monolayers on gold electrodes by electrochemical polymerization of phenol. Langmuir 6:371–376

    Article  CAS  Google Scholar 

  171. White JH, Abruña HD (1991) Influence of competing adsorbates on the underpotential deposition of copper on Pt(111). J Electroanal Chem 300:521–542

    Article  CAS  Google Scholar 

  172. Tarlov MJ, Bowden EF (1991) Electron-transfer reaction of cytochrome c adsorbed on carboxylic acid terminated alkanethiol monolayer electrodes. J Am Chem Soc 113:1847–1849

    Article  CAS  Google Scholar 

  173. Hill HAO, Lawrance GA (1989) Some consequences of mixed and dilute surface modification of gold electrodes for protein electrochemistry. J Electroanal Chem 270:309–318

    Article  CAS  Google Scholar 

  174. Lee KAB, Mowry R, McLennan G (1988) Incorporation of N-octadecyl-4-pyridinium-4’-pyridyl bromide or N-octadecyl-4,4’-bipyridinium dibromide into self-assembled hexadecylmercaptan monolayers on gold electrodes. J Electroanal Chem 246:217–224

    Article  CAS  Google Scholar 

  175. Takehara K, Takemura H, Ide Y, Okayama S (1991) Electrochemical behavior of ubiquinone and vitamin K incorporated into n-alkanethiol molecular assemblies on a gold electrode. J Electroanal Chem 308:345–350

    Article  CAS  Google Scholar 

  176. Hickman JJ, Ofer D, Laibinis PE, Whitesides GM, Wrighton MS (1991) Molecular self-assembly of two-terminal, voltammetric microsensors with internal references. Science 252:688–691

    Article  CAS  PubMed  ADS  Google Scholar 

  177. Creager SE, Rowe GK (1991) Redox properties of ferrocenylalkane thiols coadsorbed with linear n-alkanethiols on polycrystalline bulk gold electrodes. Anal Chim Acta 246:233–239

    Article  CAS  Google Scholar 

  178. Rowe GK, Creager SE (1991) Redox and ion-pairing thermodynamics in self–assembled monolayers. Langmuir 7:2307–2312

    Article  CAS  Google Scholar 

  179. Uosaki K, Sato Y, Kita H (1991) Electrochemical characteristics of a gold electrode modified with a self -assembled monolayer of ferrocenylalkanethiols. Langmuir 7:1510–1514

    Article  CAS  Google Scholar 

  180. De Long HC, Buttry DA (1990) Ionic interactions play a major role in determining the electrochemical behavior of self -assembling viologen monolayers. Langmuir 6:1319–1322

    Article  Google Scholar 

  181. Obeng YS, Bard AJ (1991) Electrogenerated chemiluminescence. 53. Electrochemistry and emission from adsorbed monolayers of a tris(bipyridyl)ruthenium(II)-based surfactant on gold and tin oxide electrodes. Langmuir 7:195–201

    Article  CAS  Google Scholar 

  182. Bertin PA, Ahrens MJ, Bhavsar K, Georganopoulou D, Wunder M, Blackburn GF, Meade TJ (2010) Ferrocene and maleimide-functionalized disulfide scaffolds for self-assembled monolayers on gold. Org Lett 12:3372–3375

    Article  CAS  PubMed  Google Scholar 

  183. Katz E, Itzhak N, Willner I (1993) Electron transfer in self-assembled monolayers of N-methyl-N’-carboxy-alkyl-4,4’-bipyridinium linked to gold electrodes. Langmuir 9:1392–1396

    Article  CAS  Google Scholar 

  184. Tender L, Carter MT, Murray RW (1994) Cyclic voltammetric analysis of ferrocene alkanethiol monolayer electrode kinetics based on Marcus theory. Anal Chem 66:3173–3181

    Article  CAS  Google Scholar 

  185. Katz E (1990) A chemically modified electrode capable of a spontaneous immobilization of amino compounds due to its functionalization with succinimidyl groups. J Electroanal Chem 291:257–260

    Article  Google Scholar 

  186. Lenhard JR, Rocklin R, Abruna H, Willman K, Kuo K, Nowak R, Murray RW (1978) Chemically modified electrodes. 11. Predictability of formal potentials of covalently immobilized charge-transfer reagents. J Am Chem Soc 100:5213–5215

    Article  CAS  Google Scholar 

  187. Katz E, Itzhak N, Willner I (1992) Effects of monolayer packing on the electrochemical activity of chemisorbed thioderivatized N, N’-dialkyl-4,4’-bipyridinium. J Electroanal Chem 336:357–362

    Article  CAS  Google Scholar 

  188. Narasimhan K, Wingard LB (1986) Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl)boronic acid modified glassy carbon electrode. Anal Chem 58:2984–2987

    Article  CAS  Google Scholar 

  189. Willner I, Katz E, Riklin A, Kasher R (1992) Mediated electron transfer in glutathione reductase organized in self-assembled monolayers on Au electrodes. J Am Chem Soc 114:10965–10966

    Article  CAS  Google Scholar 

  190. Katz E (1993) Application of bifunctional reagents for selective immobilization of amino and thiol compounds on a carbon electrode surface. J Electroanal Chem 361:109–114

    Article  CAS  Google Scholar 

  191. Katz E (1994) (1994) Application of bifunctional reagents for immobilization of proteins on a carbon electrode surface: oriented immobilization of photosynthetic reaction centers. J Electroanal Chem 365:157–164

    Article  CAS  Google Scholar 

  192. Katz E, Heleg-Shabtai V, Willner B, Willner I, Bückmann AF (1997) Electrical contact of redox enzymes with electrodes: novel approaches for amperometric biosensors. Bioelectrochem Bioenerg 42:95–104

    Article  CAS  Google Scholar 

  193. Häussling L, Michel B, Ringsdorf H, Rohrer H (1991) Direct observation of streptavidin specifically adsorbed on biotin-functionalized self-assembled monolayers with the scanning tunneling microscope. Angew Chem Int Ed Engl 30:569–572

    Article  Google Scholar 

  194. Häussling L, Ringsdorf H, Schmitt F-J, Knoll W (1991) Biotin-functionalized self-assembled monolayers on gold: surface plasmon optical studies of specific recognition reactions. Langmuir 7:1837–1840

    Article  Google Scholar 

  195. Niwa M, Mori T, Nishio E, Nishimura H, Higashi N (1992) Specific binding of concanavalin A to glycolipid monolayers on gold electrodes. J Chem Soc Chem Commun 547–549.

  196. Osaka A, Maruyama K, Hirayama S (1989) Quinone-linked and quinone-capped porphyrins. Their one-pot photochemical synthesis and fluorescence behavior. Tetrahedron 45:4815–4829

    Article  Google Scholar 

  197. Deronzier A, Essakalli M (1990) A covalently linked ruthenium tris(bipyridine)-viologen complex-polypyrrole film as a molecular photoelectrode. J Chem Soc Chem Commun 242–244.

  198. Willner I, Riklin A, Shoham B, Rivenzon D, Katz E (1993) Development of novel biosensor enzyme-electrodes: glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes. Adv Mater 5:912–915

    Article  CAS  Google Scholar 

  199. Rubinstein I, Steinberg S, Tor Y, Shanzer A, Sagiv J (1988) Ionic recognition and selective response in self-assembling monolayer membranes on electrodes. Nature 332:426–429

    Article  CAS  ADS  Google Scholar 

  200. Steinberg S, Tor Y, Sabatani E, Rubinstein I (1991) Ion-selective monolayer membranes based upon self-assembling tetradentate ligand monolayers on gold electrodes. 2. Effect of applied potential on ion binding. J Am Chem Soc 113:5176–5182

    Article  CAS  Google Scholar 

  201. Steinberg S, Rubinstein I (1992) Ion-selective monolayer membranes based upon self-assembling tetradentate ligand monolayers on gold electrodes. 3. Application as selective ion sensors Langmuir 8:1183–1187

    CAS  Google Scholar 

  202. Chidsey CED, Liu G, Scoles G, Wang J (1990) Helium diffraction from overlayers physisorbed on a self-assembled organic monolayer. Langmuir 6:1804–1806

    Article  CAS  Google Scholar 

  203. Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105:4481–4483

    Article  CAS  Google Scholar 

  204. Sawaguchi T, Nishizawa M, Matsue T, Uchida I (1990) Stabilization of steric acid LB monolayer by addition of n-alkylthiol. Chem Lett 1437–1440.

  205. Stole SM, Porter MD (1990) In situ infrared external reflection spectroscopy as a probe of the interactions at the liquid-solid interface of long-chain alkanethiol monolayers at gold. Langmuir 6:1199–1202

    Article  CAS  Google Scholar 

  206. Hill HAO, Page DJ, Walton NJ, Whitford D (1985) Direct electrochemistry, at modified gold electrodes, of redox proteins having negatively-charged binding domains: Spinach plastocyanin and a multi-substituted carboxydinitrophenyl derivative of horse heart cytochrome c. J Electroanal Chem 187:315–324

    Article  CAS  Google Scholar 

  207. Putvinski TM, Schilling ML, Katz HE, Chidsey CED, Mujsce AM, Emerson AB (1990) Self-assembly of organic multilayers with polar order using zirconium phosphate bonding between layers. Langmuir 6:1567–1571

    Article  CAS  Google Scholar 

  208. Ulman A, Tillman N (1989) Self-assembling double layers on gold surfaces: the merging of two chemistries. Langmuir 5:1418–1420

    Article  CAS  Google Scholar 

  209. Kahn BE, Chaffins SA, Gui JY, Lu F, Stern DA, Hubbard AT (1990) Surface vibrational spectroscopy. A comparison of the EELS of organic adsorbates at Pt(111) with IR and Raman spectra of the unadsorbed organics. Chem Phys 141:21–39

    Article  CAS  Google Scholar 

  210. Gleria KD, Hill HAO, Page DJ, Tew DG (1986) A spin labelled electrode. J Chem Soc Chem Commun 460–462.

  211. Barker PD, Hill HAO, Walton NJ (1989) Fast second order electron transfer reactions coupled to redox protein electrochemistry. Experiment and digital simulation. J Electroanal Chem 260:303–326

    Article  CAS  Google Scholar 

  212. Coleman JOD, Hill HAO, Walton NJ, Whatley FR (1983) Electrochemically driven respiration in mitochondria and Paracoccus denitrificans. FEBS Lett 154:319–322

    Article  CAS  PubMed  Google Scholar 

  213. Lion-Dagan M, Katz E, Willner I (1994) A bifunctional monolayer electrode consisting of 4-pyridyl sulfide and photoisomerizable spiropyran: Photoswitchable electrical communication between the electrode and cytochrome c. J Chem Soc Chem Comm 2741–2742.

  214. Haladjian J, Bianco P, Pilard R (1983) Modification of the gold electrode for the electrochemical study of cytochrome c. Electrochim Acta 28:1823–1828

    Article  CAS  Google Scholar 

  215. Willner I, Lapidot N, Riklin A, Kasher R, Zahavy E, Katz E (1994) Electron transfer communication in glutathione reductase assemblies: electrocatalytic, photocatalytic and catalytic systems for the reduction of oxidized glutathione. J Am Chem Soc 116:1428–1441

    Article  CAS  Google Scholar 

  216. Patolsky F, Katz E, Heleg-Shabtai V, Willner I (1998) A crosslinked microperoxidase-11 and nitrate reductase monolayer on a Au-electrode: an integrated electrically contacted electrode for the bioelectrocatalyzed reduction of NO3 - Chem Eur J 4 1068 1073

  217. Hill HAO, Whitford D (1987) Direct electrochemistry of native and 4-chloro-3,5-dinitrophenol (CDNP)-substituted cytochrome c at surface-modified gold and pyrolytic graphite electrodes. J Electroanal Chem 235:153–167

    Article  CAS  Google Scholar 

  218. Sagara T, Niwa K, Sone A, Hinnen C, Niki K (1990) Redox reaction mechanism of cytochrome c at modified gold electrodes. Langmuir 6:254–262

    Article  CAS  Google Scholar 

  219. Taniguchi I, Toyosawa K, Yamaguchi H, Yasukouchi K (1982) Reversible electrochemical reduction and oxidation of cytochrome c at a bis(4-pyridyl) disulphide-modified gold electrode. J Chem Soc Chem Commun 1032–1033.

  220. Narvaez A, Dominguez E, Katakis I, Katz E, Ranjit K, Willner I (1997) Microperoxidase-11 mediated reduction of hemoproteins: Electrocatalyzed reduction of cytochrome c, myoglobin and hemoglobin and electrocatalytic reduction of nitrate in the presence of cytochrome-dependent nitrate reductase. J Electroanal Chem 430:227–233

    Article  CAS  Google Scholar 

  221. Taniguchi I, Iseki M, Eto T, Toyosawa K, Yamaguchi H, Yasukouchi K (1984) 722—the effect of pH on the temperature dependence of the redox potential of horse heart cytochrome c at a bis(4-pyridyl)disulfide-modified gold electrode. Bioelectrochem Bioenerg 13:373–383

    Article  CAS  Google Scholar 

  222. Taniguchi I, Funatsu T, Iseki M, Yamaguchi H, Yasukouchi K (1985) The temperature dependence of the redox potential horse heart cytochrome c at a bis(4-pyridyl)disulfide-modified gold electrode in sodium chloride solutions. J Electroanal Chem 193:295–302

    Article  CAS  Google Scholar 

  223. Taniguchi I, Funatsu T, Umekita K, Yamaguchi H, Yasukouchi K (1986) Effect of poly-L-lysine addition on the redox behavior of horse heart cytochrome c at functional electrodes. J Electroanal Chem 199:455–460

    Article  CAS  Google Scholar 

  224. Bravo BG, Michelhaugh SL, Soriaga MP (1988) Reversible redox, hydrodesulfurization and anodic oxidation of chemisorbed thipphenols. A comparison at platinum and gold electrodes. J Electroanal Chem 241:199–210

    Article  CAS  Google Scholar 

  225. Lion-Dagan M, Marx-Tibbon S, Katz E, Willner I (1995) Photoswitchable electrical communication of glucose oxidase and glutathione reductase with electrode surfaces through photoisomerizable redox mediators. Angew Chem Int Ed Engl 34:1604–1606

    Article  CAS  Google Scholar 

  226. Taniguchi I, Higo N, Umekita K, Yasukouchi K (1986) Electrochemical behavior of horse heart cytochrome c in acid solutions using a 6-mercaptopurine-modified gold electrode. J Electroanal Chem 206:341–348

    Article  CAS  Google Scholar 

  227. Hill HAO, Page DJ, Walton NJ (1986) Intra-molecular hydrogen bonding in surface-modified gold electrodes and the effect of specific anions on the electrochemistry of cytochrome c. J Electroanal Chem 208:395–400

    Article  CAS  Google Scholar 

  228. Katz E, Schlereth DD, Schmidt H-L, Olsthoorn AJJ (1994) Reconstitution of the quinoprotein glucose dehydrogenase from its apoenzyme on a gold electrode surface modified with a monolayer of pyrroloquinoline quinone. J Electroanal Chem 368:165–171

    Article  CAS  Google Scholar 

  229. Soriaga MP, Hubbard AT (1982) Determination of the orientation of aromatic molecules adsorbed on platinum electrodes. The effect of solute concentration. J Am Chem Soc 104:3937–3945

    Article  CAS  Google Scholar 

  230. Soriaga MP, Hubbard AT (1982) Determination of the orientation of aromatic molecules adsorbed on platinum electrodes: the influence of iodide, a surface-active anion. J Am Chem Soc 104:2742–2747

    Article  CAS  Google Scholar 

  231. Soriaga MP, Wilson PH, Hubbard AT, Benton CS (1982) Orientational transitions of aromatic molecules adsorbed on platinum electrodes. J Electroanal Chem 142:317–336

    Article  CAS  Google Scholar 

  232. Soriaga MP, Stickney JL, Hubbard AT (1983) Electrochemical oxidation of aromatic compounds adsorbed on platinum electrodes. The influence of molecular orientation. J Electroanal Chem 144:207–215

    Article  CAS  Google Scholar 

  233. Li TT-T, Lin HY, Weaver MJ (1984) Intramolecular electron transfer at metal surfaces. 3. Influence of bond conjugation on reduction kinetics of Cobalt(III) anchored to electrodes via thiophenecarboxylate ligands. J Am Chem Soc 106:1233–1239

    Article  CAS  Google Scholar 

  234. Barr SW, Guyer KL, Li TT-T, Liu HY, Weaver MJ (1984) Electron transfer kinetics of redox centers anchored to metal surfaces: weak vs. strong overlap reaction pathways. J Electrochem Soc 131:1626–1631

    Article  CAS  Google Scholar 

  235. Evans SD, Ulman A, Goppert-Berarducci KE, Gerenser LJ (1991) Self-assembled multilayers of ω-mercaptoalkanoic acids: selective ionic interactions. J Am Chem Soc 113:5866–5870

    Article  CAS  Google Scholar 

  236. Thomas RS, Sun L, Crooks RM, Ricco AJ (1991) Real-time measurements of the gas-phase adsorption of n-alkylthiol mono- and multilayers on gold. Langmuir 7:620–622

    Article  CAS  Google Scholar 

  237. Bryant MA, Joa SL, Pemberton JE (1992) Raman scattering from monolayer films of thiophenol and 4-mercaptopyridine at Pt surfaces. Langmuir 8:753–756

    Article  CAS  Google Scholar 

  238. Prashar D (2012) Self assembled monolayers—a review. Int J ChemTech Research 4:258–265

    CAS  Google Scholar 

  239. Yi R, Mao Y, Shen Y, Chen L (2021) Self-assembled monolayers for batteries. J Am Chem Soc 143:12897–12912

    Article  CAS  PubMed  Google Scholar 

  240. Kondo T, Uosaki K (2007) Self-assembled monolayers (SAMs) with photo-functionalities. J Photochem Photobiol C 8:1–17

    Article  CAS  Google Scholar 

  241. Yan X, Tang J, Tanner D, Ulstrup J, Xinxin Xiao X (2020) Direct electrochemical enzyme electron transfer on electrodes modified by self-assembled molecular monolayers. Catalysts 10:1458

    Article  CAS  Google Scholar 

  242. Pandey P, Pandey A, Singh S, Shukla NK (2020) Self assembled monolayers and carbon nanotubes: a significant tool for modification of electrode surface. Sensor Lett 18:669–685

    Article  Google Scholar 

  243. Chen D, Li J (2006) Interfacial design and functionization on metal electrodes through self-assembled monolayers. Surface Sci Rep 61:445–463

    Article  CAS  ADS  Google Scholar 

  244. Romaner L, Heimel G, Zojer E (2008) Electronic structure of thiol-bonded self-assembled monolayers: Impact of coverage. Phys Rev B 77:045113

    Article  ADS  Google Scholar 

  245. Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC (2010) Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 39:1805–1834

    Article  CAS  PubMed  Google Scholar 

  246. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  PubMed  Google Scholar 

  247. Katz E (2018) Signal-switchable electrochemical systems—materials, methods, and applications Wiley-VCH, Weinheim.

  248. Adamatzky A (ed) (2021) Handbook of unconventional computing. World Scientific Publishing Company, Singapore

    Google Scholar 

  249. Katz E (ed) (2012) Molecular and supramolecular information processing. From Molecular Switches to Logic Systems, Wiley-VCH, Weinheim.

  250. Katz E (ed) (2012) Biomolecular information processing. From Logic Systems to Smart Sensors and Actuators. Wiley-VCH, Weinheim.

  251. Katz E (2019) Enzyme-based computing systems. Wiley-VCH, Weinheim

    Book  Google Scholar 

  252. Katz E (ed) (2021) DNA- and RNA-based computing systems. Wiley-VCH, Weinheim

    Google Scholar 

  253. Pita M, Katz E (2008) Multiple logic gates based on electrically wired surface-reconstituted enzymes. J Am Chem Soc 130:36–37

    Article  CAS  PubMed  Google Scholar 

  254. ul Haque S, Duteanu N, Ciocan S, Nasar A, Inamuddin, (2021) A review: evolution of enzymatic biofuel cells. J Environ Management 298:113483

  255. Katz E (ed) (2014) Implantable bioelectronics. devices, materials, and applications. Wiley-VCH, Weinheim.

  256. Parlak O, Salleo A, Turner A (2020) Wearable bioelectronics. Elsevier, Amsterdam

    Google Scholar 

  257. Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in living snail. J Am Chem Soc 134:5040–5043

    Article  PubMed  Google Scholar 

  258. Ostatna V, Palecek E (2006) Self-assembled monolayers of thiol-end-labeled DNA at mercury electrodes. Langmuir 22:6481–6484

    Article  CAS  PubMed  Google Scholar 

  259. Yau HCM, Chan HL, Yang M (2003) Electrochemical properties of DNA-intercalating doxorubicin and methylene blue on n-hexadecyl mercaptan-doped 5′-thiol-labeled DNA-modified gold electrodes. Biosens Bioelectron 18:873–879

    Article  CAS  PubMed  ADS  Google Scholar 

  260. Oberhaus FV, Frense D, Beckmann D (2020) Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: a review. Biosensors 10:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Li Z, Zhang L, Zeng S, Zhang M, Du E, Li B (2014) Effect of surface pretreatment on self-assembly of thiol-modified DNA monolayers on gold electrode. J Electroanal Chem 722–723:131–140

    Article  Google Scholar 

  262. Guo Z, Smutok O, Johnston WA, Ayva CE, Walden P, McWhinney B, Ungerer JPJ, Melman A, Katz E, Alexandrov K (2022) Circular permutated PQQ-glucose dehydrogenase as an ultrasensitive electrochemical biosensor. Angew Chem Int Ed 61:e202109005

    Article  CAS  Google Scholar 

  263. Guo Z, Smutok O, Johnston WA, Walden P, Ungerer JPJ, Peat TS, Newman J, Parker J, Nebl T, Melman A, Suderman RJ, Katz E, Alexandrov K (2021) Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices. Nature Comm 12:7137

    Article  CAS  ADS  Google Scholar 

  264. Bollella P, Edwardraja S, Guo Z, Alexandrov K, Katz E (2020) Control of allosteric protein electrochemical switches with biomolecular and electronic signals. J Phys Chem Lett 11:5549–5554

    Article  CAS  PubMed  Google Scholar 

  265. Bollella P, Edwardraja S, Guo Z, Alexandrov K, Katz E (2020) Control of allosteric electrochemical protein switch using magnetic signals. Chem Commun 56:9206–9209

    Article  CAS  Google Scholar 

  266. Bollella P, Edwardraja S, Guo Z, Whitfield J, Melman A, Alexandrov K, Katz E (2021) Connecting artificial proteolytic and electrochemical signaling systems with caged messenger peptides. ACS Sensors 6:3596–3603

    Article  CAS  PubMed  Google Scholar 

  267. Piper A, Corrigan DK, Mount AR (2021) An electrochemical comparison of thiolated self-assembled monolayer (SAM) formation and stability in solution on macro- and nanoelectrodes. Electrochem Sci Adv 2:e2100077

    Article  Google Scholar 

  268. Silvestrini M, Bortolozzo K, Paladin D, Ugo P (2010) Biofunctionalization of nanoelectrode ensembles: protection of the nanoelectrodes with self-assembled monolayers. ECS Trans 25:1

    Article  CAS  ADS  Google Scholar 

  269. Mirkin MV, Amemiya S (2015) Nanoelectrochemistry. CRC Press, Boca Raton

    Book  Google Scholar 

  270. Mariani F, Gualandi I, Schuhmann W, Scavetta E (2022) Micro- and nano-devices for electrochemical sensing. Microchim Acta 189:459

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Oleh Smutok thanks Human Frontier Science Program (HFSP) for the fellowship allowing his work in the USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oleh Smutok or Evgeny Katz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tverdokhlebova, A., Sterin, I., Smutok, O. et al. Modification of electrodes with self-assembled monolayers—general principles. J Solid State Electrochem 28, 711–755 (2024). https://doi.org/10.1007/s10008-023-05700-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05700-w

Keywords

Navigation