Skip to main content

Advertisement

Log in

Electrochemical performance of rGO-Fe2O3-SnO2 composite anode for lithium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Doping and coating techniques are key methods to address volume expansion and capacity reduction associated with metal oxide-based anodes in lithium-ion batteries. This research focuses on combining graphene with SnO2 and Fe2O3. The composite compounds of rGO-Fe2O3-SnO2 exhibited a spherical and fluffy structure, with granular compounds distributed either on the surface of graphene or between its lamellar layers. 0.4% rGO-Fe2O3-SnO2 demonstrated the most favorable cycling performance and rate capability, with an initial discharge specific capacity of 1439.63 mAh/g and remained relatively stable at approximately 512.28 mAh/g after 1000 cycles. The incorporation of graphene reduced contact resistance and charge transfer resistance, which effectively mitigated the volume expansion phenomenon and enhanced the electrochemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Q, Wei M, Dong Q, Gao Q, Cai X, Zhang S, Yuan T, Peng F, Fang Y, Yang S (2023) Photoinduced Cu+ /Cu2+ interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery. J Energ Chem 83–91

  2. Dong Q, Wei M, Zhang Q, Xiao L, Cai X, Zhang S, Gao Q, Fang Y, Peng F, Fang Y, Yang S (2023) Photoassisted Li-ion de-intercalation and Niδ+ valence conversion win-win boost energy storage performance in Ni/CdS@Ni3S2-based Li-ion battery. Chem Eng J 459

    Article  CAS  Google Scholar 

  3. Lu Y, Zhang Q, Chen J (2019) Recent progress on lithium-ion batteries with high electrochemical performance [J]. Sci China Chem 62(5):533–548

    Article  CAS  Google Scholar 

  4. Jaguemont J, Boulon L, Dube Y (2016) A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl Energy 164:99–114

    Article  CAS  Google Scholar 

  5. Shi Z, Wang T, Shi Z, Cui S, Zhang Z, Liu W, Jin Y (2023) Synergetic effects of Fe-N-C and LiFePO4 in modified separator on improved adsorption and catalytic conversion reaction of soluble LiPSs for lithium-sulfur batteries. Chem Eng J 457

    Article  CAS  Google Scholar 

  6. Shi Z, Shi Z, Gao B, Yin J, Liu Z, Wang L (2023) Preparation of co-nanocluster graphene composite by asymmetric domain-limited electrochemical exfoliation for functionalized lithium sulfur battery separator application. J Alloy Compd 960

    Article  CAS  Google Scholar 

  7. Pan L, Zhu XD, Xie XM et al (2015) Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Func Mater 25:3341–3350

    Article  CAS  Google Scholar 

  8. Chen JS, Lou XW (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11):1877–1893

    Article  CAS  PubMed  Google Scholar 

  9. Feng Y, Wu K, Ke J et al (2020) Exfoliated graphite nanosheets wrapping on MoO2-SnO2 nanoparticles as a high performance anode material for lithium ion batteries. J Power Sources 228357–228466

  10. Aboulaich A, Mouyane M, Robert F et al (2007) New Sn-based composites as anode materials for Li-ion batteries. J Power Sources 174(2):1224–1228

    Article  CAS  Google Scholar 

  11. Li B, Gu P, Zhang G et al (2018) Ultrathin nanosheet assembled Sn0.91Co0.19S2 nanocages with exposed (100) facets for high-performance lithium-ion batteries. Small 14(5):725–734

  12. Hu X, Zeng G, Chen J et al (2017) 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries. J Mater Chem A 5(9):4535–4542

    Article  CAS  Google Scholar 

  13. Tian R, Zhang Y, Chen Z, Duan H, Xu B, Guo Y, Kang H, Li H, Liu H (2016) The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode. Sci Rep 6:19195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai W, Li X, Li B, Mei J, Zhang X, Guo W, Peng G, Li H, Li X, Yuan J (2021) MOF-derived ZnO/ZnFe2O4@RGO nanocomposites with high lithium storage performance. J Solid State Electrochem 25:1175–1181

    Article  CAS  Google Scholar 

  15. Chen YB, Liang JH, Tian QH et al (2020) Facile construction of clustered Fe2O3/TiO2 composite for improved lithium storage performance. Synth Met 263:1–6

    Article  Google Scholar 

  16. Zhang ZY, Liang JS, Zhang X et al (2020) Dominant pseudocapacitive lithium storage in the carbon-coated ferric oxide nanoparticles (Fe2O3@C) towards anode materials for lithium-ion batteries. Int J Hydrogen Energy 45(15):8186–8197

    Article  CAS  Google Scholar 

  17. Luis Z, Gabriel G, Roberto OC et al (2019) Centrifugally spun α-Fe2O3/TiO2/carbon composite fibers as anode materials for lithium-ion batteries. Appl Sci 9(19):403211–403217

    Google Scholar 

  18. Asakura D, Nanba Y, Okubo M et al (2019) Operando soft X-ray emission spectroscopy of the Fe2O3 anode to observe the conversion reaction. Phys Chem Chem Phys 21(48):26531–26537

    Article  Google Scholar 

  19. Zhang WM, Wu XL, Hu JS et al (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion Batteries. Adv Func Mater 18(24):3941–3946

    Article  CAS  Google Scholar 

  20. Cui ZM, Jiang LY, Song WG et al (2009) High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chem Mater 21(6):1162–1166

    Article  CAS  Google Scholar 

  21. Cui Z, Sun M, Liu H et al (2020) Double-shell SnO2@Fe2O3 hollow spheres as a high-performance anode material for lithium-ion batteries. CrystEngComm 22:1197–1208

    Article  CAS  Google Scholar 

  22. Chai X, Shi C, Liu E et al (2015) Carbon-coated Fe2O3 nanocrystals with enhanced lithium storage capability. Appl Surf Sci 347:178–185

    Article  CAS  Google Scholar 

  23. Lv X, Deng J, Wang J et al (2015) Carbon-coated α-Fe2O3 nanostructures for efficient anode of Li-ion battery. J Mater Chem A 3(9):5183–5188

    Article  CAS  Google Scholar 

  24. Qin G, Ding L, Zeng M et al (2020) Mesoporous Fe2O3/N-doped graphene composite as an anode material for lithium ion batteries with greatly enhanced electrochemical performance. J Electroanal Chem 866(114176):1–6

    Google Scholar 

  25. Mao S, Lu G, Chen J (2015) Three-dimensional graphene-based composites for energy applications. Nanoscale 7:6924–6943

    Article  CAS  PubMed  Google Scholar 

  26. Lian P, Zhu X, Liang S et al (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56(12):4532–4539

    Article  CAS  Google Scholar 

  27. Zhou X, Zou Y, Yang J et al (2014) Periodic structures of Sn self-inserted between graphene interlayers as anodes for Li-ion battery. Power Sources 25(3):287–293

    Article  Google Scholar 

  28. Zhu G, Gao B, Tu G et al (2022) Improving effect of graphene on electrochemical properties of Fe2O3 anode materials. Metals 12(4):593

    Article  CAS  Google Scholar 

  29. Zhu G, Gao B, Zhang Y et al (2022) A study on the effect of graphene in enhancing the electrochemical properties of SnO2-Fe2O3 anode materials. Materials 15(22):7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors are grateful for the financial support of the research project of application foundation of Liaoning Province of China (no. 2022JH2/101300006), the Supporting Project of Middle-young Aged Innovative Talents of Science and Technology of Shenyang City, the Research Innovation Team Building Program of Shenyang Ligong University, the Light-Selection Team Plan of Shenyang Ligong University, the Basic Research Project of Education Department of Liaoning Province of China (no. LG202020), the Applied Basic Research Program Projects of Liaoning Province of China (no. 2023JH2/101300214), High-level Talents Introduction Plan from Shenyang Ligong University (no. 1010147000902), Optical-Selection Growth Plan and Optical-Selection Team Plan from Shenyang Ligong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cean Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Lu, F., Liu, Q. et al. Electrochemical performance of rGO-Fe2O3-SnO2 composite anode for lithium-ion battery. J Solid State Electrochem 28, 75–84 (2024). https://doi.org/10.1007/s10008-023-05660-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05660-1

Keywords

Navigation