Skip to main content
Log in

Comparative study of electrochemical performance of 3D leaf-like MnO2 and Mn2O3 powder for supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, we report the difference between the electrochemical behavior of MnO2 and Mn2O3, which are synthesized in the presence and absence of Ni foam, respectively, using simple and facile hydrothermal method. The X-ray diffraction (XRD) patterns of MnO2 and Mn2O3 samples revealed the presence of orthorhombic and cubic phases, with the p n n m and Ia\(\overline{3 }\) space groups, respectively. The FE-SEM showed the 3D leaf-like structure of MnO2 over the Ni foam and the agglomeration of the powder of the Mn2O3 sample. The molecular fingerprint and chemical composition of the MnO2 and Mn2O3 has been confirmed from the Raman spectra and FTIR, respectively. The presence of Mn4+ and Mn3+ oxidation states in MnO2 and Mn2O3, respectively, was verified by XPS results. The electrochemical performances indicate the maximum specific capacitance of MnO2 and Mn2O3, 212 and 338 F/g, at the scan rate of 5 mV/s. Basic Mn2O3 is also showing better capacity retention than MnO2 after 500 cycles in 3 M KOH electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kumar R, Rai P, Sharma A (2016) 3D urchin-shaped Ni3(VO4)2 hollow nanospheres for high-performance asymmetric supercapacitor applications. J Mater Chem A Mater 4. https://doi.org/10.1039/c6ta03519a

  2. Aricò AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377

    Article  PubMed  Google Scholar 

  3. Lokhande CD, Dubal DP, Joo OS (2011) Metal oxide thin film based supercapacitors. Curr Appl Phys 11(3):255–270

    Article  Google Scholar 

  4. Pandey K, Yadav P, Mukhopadhyay I (2015) Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor. Phys Chem Chem Phys 17. https://doi.org/10.1039/c4cp04321a

  5. Pandey K, Yadav P, Mukhopadhyay I (2014) Influence of current collector electrode on the capacitive performance of electrodeposited PANI: insight gained from frequency and time domain analysis. RSC Adv 4. https://doi.org/10.1039/c4ra09277e

  6. Mukhopadhyay I, Suzuki Y, Kawashita T et al (2010) Studies on surface functionalized single wall carbon nanotube for electrochemical double layer capacitor application. J Nanosci Nanotechnol 10. https://doi.org/10.1166/jnn.2010.1995

  7. Li Y, Cao D, Wang Y et al (2015) Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J Power Sources 279. https://doi.org/10.1016/j.jpowsour.2014.12.153

  8. Uke SJ, Akhare VP, Meshram-Mardikar SP et al (2019) PEG assisted hydrothermal fabrication of undoped and Cr doped NiCo 2 O 4 nanorods and their electrochemical performance for supercapacitor application. Adv Sci Eng Med 11. https://doi.org/10.1166/asem.2019.2367

  9. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7

  10. Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Mesoporous anhydrous RuO2 as a supercapacitor electrode material. In: Solid State Ionics 175(1–4):511–5

  11. Kim SI, Lee JS, Ahn HJ et al (2013) Facile route to an efficient nio supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5. https://doi.org/10.1021/am3021894

  12. Marathey P, Khanna S, Patel R et al (2021) Pseudocapacitive energy storage in copper oxide and hydroxide nanostructures casted over nickel-foam in Proceedings of the 7th International Conference on Advances in Energy Research 2021 (pp. 1383–1391). Springer Singapore

  13. Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors - an overview. Int J Electrochem Sci 3(11):1196–1217

    Article  CAS  Google Scholar 

  14. Lu X, Wang G, Zhai T et al (2012) Hydrogenated TiO 2 nanotube arrays for supercapacitors. Nano Lett 12. https://doi.org/10.1021/nl300173j

  15. Patel R, Vinchhi P, Mukhopadhyay I (2023) Role of cerium doping in petal-like NiO grown directly over Ni foam for enhancing the super-capacitive behaviour. Chemistry Select 8:e202300063. https://doi.org/10.1002/slct.202300063

  16. Dong Y, Wang Y, Xu Y et al (2017) Facile synthesis of hierarchical nanocage MnCo2O4 for high performance supercapacitor. Electrochim Acta 225. https://doi.org/10.1016/j.electacta.2016.12.109

  17. Bandgar SB, Vadiyar MM, Suryawanshi UP et al (2020) Rotational reflux chemistry approach derived flat holey CuFe2O4 nanosheets for supercapacitors application. Mater Lett 279. https://doi.org/10.1016/j.matlet.2020.128514

  18. Lv L, Xu Q, Ding R et al (2013) Chemical synthesis of mesoporous CoFe2O4 nanoparticles as promising bifunctional electrode materials for supercapacitors. Mater Lett 111. https://doi.org/10.1016/j.matlet.2013.08.055

  19. Huang T, Zhao C, Qiu Z et al (2017) Hierarchical porous ZnMn2O4 synthesized by the sucrose-assisted combustion method for high-rate supercapacitors. Ionics (Kiel) 23. https://doi.org/10.1007/s11581-016-1817-8

  20. Li Y, Han X, Yi T et al (2019) Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J Energy Chem 31:54–78

    Article  Google Scholar 

  21. Dubal DP, Holze R (2013) All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51. https://doi.org/10.1016/j.energy.2012.11.021

  22. Chen S, Zhu J, Wu X et al (2010) Graphene oxide-Mno2 nanocomposites for supercapacitors. ACS Nano 4. https://doi.org/10.1021/nn901311t

  23. Kumar A, Sanger A, Kumar A et al (2016) An efficient α-MnO2 nanorods forests electrode for electrochemical capacitors with neutral aqueous electrolytes. Electrochim Acta 220. https://doi.org/10.1016/j.electacta.2016.10.168

  24. Ohzuku T, Kitagawa M, Hirai T (1990) Electrochemistry of manganese dioxide in lithium nonaqueous cell: III . X‐ray diffractional study on the reduction of spinel‐related manganese dioxide. J Electrochem Soc 137. https://doi.org/10.1149/1.2086552

  25. Myung ST, Komaba S, Kurihara K, Kumagai N (2006) Hydrothermal phase formation of orthorhombic LiMnO2 and its derivatives as lithium intercalation compounds. Solid State Ion 177. https://doi.org/10.1016/j.ssi.2005.10.025

  26. Doeff MM, Anapolsky A, Edman L et al (2001) A high-rate manganese oxide for rechargeable lithium battery applications. J Electrochem Soc 148. https://doi.org/10.1149/1.1349883

  27. Xia XH, Tu JP, Zhang YQ et al (2011) Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: a pseudocapacitive material with superior performance. J Phys Chem C 115. https://doi.org/10.1021/jp208113j

  28. Wu M, Zhang L, Gao J et al (2008) Effects of thickness and electrolytes on the capacitive characteristics of anodically deposited hydrous manganese oxide coatings. J Electroanal Chem 613. https://doi.org/10.1016/j.jelechem.2007.10.018

  29. Pang S-C, Anderson MA, Chapman TW (2000) Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147:. https://doi.org/10.1149/1.1393216

  30. Chung KW, Kim KB, Han SH, Lee H (2005) Novel synthesis and electrochemical characterization of nano-sized cellular Fe3O4 thin film. Electrochem Solid-State Lett 8. https://doi.org/10.1149/1.1891627

  31. Dai Y, Wang K, Zhao J, Xie J (2006) Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors from the KMnO4 solution. J Power Sources 161:. https://doi.org/10.1016/j.jpowsour.2006.04.098

  32. Liu X, Zhao J, Cao Y et al (2015) Facile synthesis of 3D flower-like porous NiO architectures with an excellent capacitance performance. RSC Adv 5:. https://doi.org/10.1039/c5ra05231a

  33. Li Y, Fu H, Zhang Y et al (2014) Kirkendall effect induced one-step fabrication of tubular Ag/MnO x nanocomposites for supercapacitor application. J Phys Chem C 118. https://doi.org/10.1021/jp412187n

  34. Yang Y, Huang C (2010) Effect of synthetical conditions, morphology, and crystallographic structure of MnO 2 on its electrochemical behavior. J Solid State Electrochem 14:. https://doi.org/10.1007/s10008-009-0938-7

  35. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemis Mater 16. https://doi.org/10.1021/cm049649j

  36. Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144. https://doi.org/10.1006/jssc.1998.8128

  37. Yan D, Guo Z, Zhu G et al (2012) MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. J Power Sources 199. https://doi.org/10.1016/j.jpowsour.2011.10.051

  38. Ming B, Li J, Kang F et al (2012) Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials. J Power Sources 198. https://doi.org/10.1016/j.jpowsour.2011.10.003

  39. Yu Z, Duong B, Abbitt D, Thomas J (2013) Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater 25. https://doi.org/10.1002/adma.201300572

  40. Rao TP, Kumar A, Naik VM, Naik R (2019) Effect of carbon nanofibers on electrode performance of symmetric supercapcitors with composite α-MnO2 nanorods. J Alloys Compd 789. https://doi.org/10.1016/j.jallcom.2019.03.011

  41. Gueon D, Moon JH (2017) MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustain Chem Eng 5. https://doi.org/10.1021/acssuschemeng.6b02803

  42. Huang Y, Weng D, Kang S, Lu J (2020) Controllable synthesis of nanostructured MnO 2 as electrode material of supercapacitors . J Nanosci Nanotechnol 20. https://doi.org/10.1166/jnn.2020.18497

  43. Son YH, Bui PTM, Lee HR et al (2019) A rapid synthesis of mesoporous Mn2O3 nanoparticles for supercapacitor applications. Coatings 9. https://doi.org/10.3390/coatings9100631

  44. Liu PP, Zheng YQ, Zhu HL, Li TT (2019) Mn2O3 hollow nanotube arrays on Ni Foam as efficient supercapacitors and electrocatalysts for oxygen evolution reaction. ACS Appl Nano Mater 2. https://doi.org/10.1021/acsanm.8b01918

  45. Ogata A, Komaba S, Baddour-Hadjean R et al (2008) Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochim Acta 53. https://doi.org/10.1016/j.electacta.2007.11.038

  46. Xia H, Wang Y, Lin J, Lu L (2011) Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res Lett 6. https://doi.org/10.1186/1556-276x-6-595

  47. Niu X, Wei H, Tang K et al (2015) Solvothermal synthesis of 1D nanostructured Mn2O3: effect of Ni2+ and Co2+ substitution on the catalytic activity of nanowires. RSC Adv 5. https://doi.org/10.1039/c5ra14618f

  48. Luo Y, Deng YQ, Mao W et al (2012) Probing the surface structure of α-Mn 2O 3 nanocrystals during CO oxidation by operando Raman spectroscopy. J Phys Chem C 116. https://doi.org/10.1021/jp307637w

  49. Han YF, Ramesh K, Chen L et al (2007) Observation of the reversible phase-transformation of α-Mn 2O3 nanocrystals during the catalytic combustion of methane by in situ raman spectroscopy. J Phys Chem C 111:. https://doi.org/10.1021/jp0686691

  50. Mylarappa M, Lakshmi VV, Mahesh KRV et al (2016) A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: an advanced material for electrochemical and environmental applications. In: IOP Conf Ser: Mater Sci Eng

  51. Belardi G, Ballirano P, Ferrini M et al (2011) Characterization of spent zinc-carbon and alkaline batteries by SEM-EDS, TGA/DTA and XRPD analysis. Thermochim Acta 526. https://doi.org/10.1016/j.tca.2011.09.012

  52. Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochim Acta A Mol Biomol Spectrosc 60. https://doi.org/10.1016/S1386-1425(03)00279-8

  53. Farooq MU, Muhammad Z, Khalid S et al (2019) Magnetic coupling in 3D-hierarchical MnO 2 microsphere. J Mater Sci: Mater Electron 30. https://doi.org/10.1007/s10854-018-0556-1

  54. Moses Ezhil Raj A, Victoria SG, Jothy VB et al (2010) XRD and XPS characterization of mixed valence Mn 3 O 4 Hausmannite thin films prepared by chemical spray pyrolysis technique. Appl Surf Sci 256. https://doi.org/10.1016/j.apsusc.2009.11.051

  55. Pal N, Sharma A, Acharya V et al (2020) Gate interface engineering for subvolt metal oxide transistor fabrication by using ion-conducting dielectric with Mn2O3 gate interface. ACS Appl Electron Mater 2

  56. Gogotsi Y, Penner RM (2018) Energy storage in nanomaterials - capacitive, pseudocapacitive, or battery-like? ACS Nano 12

  57. Kumar R, Rai P, Sharma A (2016) Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties. RSC Adv 6. https://doi.org/10.1039/c5ra20331g

Download references

Acknowledgements

The authors are grateful to the Department of solar energy for facilitating the place for the experimental work We also thank Mr. R.K. Sharma for providing the XPS facility at RRCAT, Indore.

Funding

The authors thank SERB, Dept. of Science and Technology, Govt. of India, for providing grants through project no. (SERB/2018/002067) and (DST/TMD/MES/2K17/32(G)) to carry out the present work and also thank the Solar Research and Development Centre for the financial support throughout the entire work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1664 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, R., Patel, Y., Rajpura, K. et al. Comparative study of electrochemical performance of 3D leaf-like MnO2 and Mn2O3 powder for supercapacitor application. J Solid State Electrochem 27, 3453–3463 (2023). https://doi.org/10.1007/s10008-023-05628-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05628-1

Keywords

Navigation