Skip to main content
Log in

Methanol electro-oxidation on carbon-supported Pt and Au@Pt nanoparticles with quasi-spherical and polyhedral forms in acid aqueous medium

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, monometallic Pt and bimetallic Au@Pt (core-shell) nanoparticles with different shapes are synthesized by adding Ag+ as a shape-modifying agent, polyhedral forms are obtained: Pt0.02 (cubic form), bimetallic Au@Pt0.1 (angulated polyhedral form), and Au@Pt0.2 (polyhedral and cube forms). The nanoparticle’s shape depends on the amount of Ag+ used during synthesis (subindex indicates the Ag/Pt ratio in all cases). Without Ag+, quasi-spherical Pt and Au@Pt nanoparticles are obtained. The polyhedral and angulated shapes of Pt0.02/C and Au@Pt0.1/C are more active for methanol oxidation (0.5 M methanol + 0.5 M H2SO4), in comparison with the quasi-spherical Pt/C, Au@Pt/C and polyhedral/cubic Au@Pt0.2/C nanoparticles. From these results, it is found that the electrochemical response of the tested catalysts varies not only due to the nature of the electrocatalyst (Pt/C or Au@Pt/C) but on the nanoparticle’s shape which is also associated with the dominant crystal plane on their surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bock C, MacDougall B, Sun C-L (2012) Catalysis for direct methanol fuel cells. Springer, New York, pp 369–412

    Google Scholar 

  2. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) J Power Sources 155:95–110

    Article  CAS  Google Scholar 

  3. Koper MTM (2011) Nanoscale 3:2054–2073

    Article  CAS  PubMed  Google Scholar 

  4. Koper MTM, Lai SCS, Herrero E (2009) Fuel cell catalysis: a surface science approach. John Wiley & Sons Inc, London, pp 159–207

    Google Scholar 

  5. Climent V, Feliu JM (2011) J Solid State Electr 15:1297–1315

    Article  CAS  Google Scholar 

  6. Niu W, Xu G (2011) Nano Today 6:265–285

    Article  CAS  Google Scholar 

  7. Niu W, Zhang L, Xu G (2010) ACS Nano 4:1987–1996

    Article  CAS  PubMed  Google Scholar 

  8. Antoniassi RM, Silva JCM, Lopes T, Oliveira Neto A, Spinacé EV (2017) Int J Hydrogen Energ 42:28786–28796

    Article  CAS  Google Scholar 

  9. Susut C, Nguyen TD, Chapman GB, Tong Y (2008) Electrochim Acta 53:6135–6142

    Article  CAS  Google Scholar 

  10. Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A, Garnier E, Feliu JM, Aldaz A (2008) Phys Chem Chem Phys 10:3689–3698

    Article  PubMed  Google Scholar 

  11. Kim HJ, Ruqia B, Kang MS, Lim SB, Choi R, Nam KM, Seo WS, Lee G, Choi SI (2017) Sci Bull 62:943–949

    Article  CAS  Google Scholar 

  12. Tripković AV, Gojković SL, Popović KĐ, Lović JD (2006) J Serb Chem Soc 71:1333–1343

    Article  Google Scholar 

  13. Min M, Kim C, Lee H (2010) J Mol Catal A- Chem 333:6–10

    Article  CAS  Google Scholar 

  14. Lou W, Ali A, Shen PK (2021) Nano Reserch 15(1):18–37

    Article  Google Scholar 

  15. Cao Y, Zhang X, Yue X, Zhang M, Du W, Xia H (2022) Royak Society of Chemestry 3:2786–2792

    CAS  Google Scholar 

  16. Wu W, Tang Z, Wang K, Liu Z, Li L, Chen S (2018) Electrochemical Acta 260:168–176

    Article  CAS  Google Scholar 

  17. Seo D, Park JC, Song H (2006) J Am Chem Soc 128:14863–14870

    Article  CAS  PubMed  Google Scholar 

  18. Chen D, Tao Q, Liao LW, Liu SX, Chen YX, Ye S (2011) Electrocatalysis 2:207–219

    Article  CAS  Google Scholar 

  19. Doña-Rodríguez JM, Herrera-Melián JA, Pérez-Peña J (2000) J Chem Educ 77:1195

    Article  Google Scholar 

  20. Kinoshita K (1990) J Electrochem Soc 137:845–848

    Article  CAS  Google Scholar 

  21. Stoyanova A, Naidenov V, Petrov K, Nikolov I, Vitanov T, Budevski E (1999) J Appl Electrochem 29:1197–1203

    Article  CAS  Google Scholar 

  22. Iwasita T, Xia X (1996) J Electroanal Chem 411:95–102

    Article  Google Scholar 

  23. Iwasita T, Xia XH, Liess HD, Vielstich W (1997) J Phys Chem B 101:7542–7547

    Article  CAS  Google Scholar 

  24. Merte LR, Behafarid F, Miller DJ, Friebel D, Cho S, Mbuga F, Sokaras D, Alonso-Mori R, Weng TC, Nordlund D, Nilsson A, Roldan-Cuenya B (2012) ACS Catal 2:2371–2376

    Article  CAS  Google Scholar 

  25. Solla-Gullon J, Rodriguez P, Herrero E, Aldaz A, Feliu JM (2008) Phys Chem Chem Phys 10:1359–1373

    Article  CAS  PubMed  Google Scholar 

  26. Vázquez-Huerta G, Palomar-Pardavé M E, Romero-Romo MA, de Oca-Yemha MG, Garfias-García E, Aldana-González JI (2016) Electrocatalysis 7:174–183

  27. Vilian ATE, Hwang SK, Kwak CH, Oh SY, Kim CY, Lee GW, Lee JB, Huh YS, Han YK (2016) Synthetic Met 219:52–59

    Article  CAS  Google Scholar 

  28. Yan S, Zhang S (2012) Int J Hydrogen Energ 37:9636–9644

    Article  CAS  Google Scholar 

  29. Du B, Tong (2005) J Phys Chem B 109:17775–17780

  30. Pedersen MØ, Helveg S, Ruban A, Stensgaard I, Lægsgaard E, Nørskov JK, Besenbacher F (1999) Surf Sci 426:395

    Article  CAS  Google Scholar 

  31. Yuan H, Guo D, Qiu X, Zhu W, Chen L (2009) J Power Sources 188:8–13

    Article  CAS  Google Scholar 

  32. Zeng J, Yang J, Lee JY, Zhou W (2006) J Phys Chem B 110:24606–24611

    Article  CAS  PubMed  Google Scholar 

  33. Ehlers DH, Spitzer A, Lüth H (1985) Surf Sci 160:57–69

    Article  CAS  Google Scholar 

  34. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger JM (2002) J Power Sources 105:283–296

    Article  CAS  Google Scholar 

  35. Beden B, Hahn F, Juanto S, Lamy C, Leger JM (1987) J Electroanal Chem 225:215–225

    Article  CAS  Google Scholar 

  36. Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) J Am Chem Soc 125:3680–3681

    Article  CAS  PubMed  Google Scholar 

  37. Xia XH, Iwasita T, Ge F, Vielstich W (1996) Electrochim Acta 41:711–718

    Article  CAS  Google Scholar 

  38. Zhu Y, Uchida H, Yajima T, Watanabe M (2001) Langmuir 17:146–154

    Article  CAS  Google Scholar 

  39. Camara GA, Ticianelli EA, Mukerjee S, Lee S, McBreen J (2002) J Electrochem Soc 149:A748

    Article  CAS  Google Scholar 

  40. Lovell PF (1981) AIChE J 27:316–316

    Article  Google Scholar 

  41. Holstein WL, Rosenfeld HD (2005) J Phys Chem B 109:2176–2186

    Article  CAS  PubMed  Google Scholar 

  42. Yajima T, Uchida H, Watanabe M (2004) J Phys Chem B 108:2654–2659

    Article  CAS  Google Scholar 

  43. Chung DY, Lee KJ, Sung YE (2016) J Phys Chem C 120:9028–9035

    Article  CAS  Google Scholar 

  44. Seland F, Tunold R, Harrington DA (2006) Electrochim Acta 51:3827–3840

    Article  CAS  Google Scholar 

  45. Adžić RR, Tripković AV, O’Grady WE (1982) Nature 296:137–138

    Article  Google Scholar 

  46. Clavilier J, Lamy C, Leger JM (1981) J Electroanal Chem 125:249–254

    Article  CAS  Google Scholar 

  47. Housmans THM, Wonders AH, Koper MTM (2006) J Phys Chem B 110:10021–10031

    Article  CAS  PubMed  Google Scholar 

  48. Lee YW, Ko AR, Han SB, Kim HS, Park KW (2011) Phys Chem Chem Phys 13:5569–5572

    Article  CAS  PubMed  Google Scholar 

  49. Zhao M, Yang X, Hood ZD, Chi M, Xia Y (2018) J Mater Res 33:3891–3897

    Article  CAS  Google Scholar 

  50. Tan C, Sun Y, Zheng J, Wang D, Li Z, Zeng H, Guo J, Jing L, Jiang L (2017) Sci Rep 7:6347

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Laboratory of Microscopy of the DCBI-UAM-Azc for STEM images and the Department of Materials at UAM-Azc for financing the present research. NRO wishes to thank CONACyT for the studentship 542829, postgraduate studies. Furthermore, SCA, EMAE, and MEPP, thank SNI (CONACyT) for the distinction granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vázquez-Huerta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Supplementary file2 (DOCX 508 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roque-de-la-O, N., Vázquez-Huerta, G., Corona-Avendaño, S. et al. Methanol electro-oxidation on carbon-supported Pt and Au@Pt nanoparticles with quasi-spherical and polyhedral forms in acid aqueous medium. J Solid State Electrochem 27, 2927–2936 (2023). https://doi.org/10.1007/s10008-023-05564-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05564-0

Keywords

Navigation