Skip to main content
Log in

Paradigm shift in electrochemistry education and research: new opportunities from a theoretical perspective

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present-day electrochemistry education requires expertise in diverse branches of science and engineering, both from fundamental perspectives and industrial applications. The importance of non-equilibrium thermodynamics formalism and diverse phenomenological versions is pointed out for electron transfer processes at electrode surfaces and charge transport in redox polymer electrodes. The crucial role envisaged for students of mathematics and physics to make a substantial impact in modelling of electron transfer phenomena is highlighted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schröder U (2020) Electrochemistry: connector of sciences. J Solid State Electrochem 24:2179–2180

    Article  Google Scholar 

  2. Scholz F (2023) Benefits of electrochemistry studies for the majority of students who will not become electrochemists. J Solid State Electrochem (in Press). https://doi.org/10.1007/s10008-023-05415-y

    Article  Google Scholar 

  3. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, USA

    Google Scholar 

  4. Bockris JO’M, Mannan RJ, Damjanovic A (1968) Dependence of the rate of electrodic redox reactions on the substrate. J Chem Phys 48:1898–1904

    Article  ADS  CAS  Google Scholar 

  5. Zhu J, Hu L, Zhao P, Lee LYS, Wong KY (2020) Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev 120:851–918

    Article  CAS  PubMed  Google Scholar 

  6. Trasatti S (1972) Work function, electronegativity, and electrochemical behavior of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem 39:163–184

    Article  CAS  Google Scholar 

  7. Quaino P, Juarez F, Santos E, Schmickler W (2014) Volcano plots in hydrogen electrocatalysis -uses and abuses Beilstein. J Nanotechnol 5:846–854

    Google Scholar 

  8. Harinipriya S, Sangaranarayanan MV (2002) Hydrogen evolution reaction on electrodes: influence of work function, dipolar adsorption, and desolvation energies. J Phys Chem B 106:8681–8688

    Article  CAS  Google Scholar 

  9. Malaie K, Scholz F, Schröder U, Wulff H, Kahlert H (2022) Determining the Gibbs energy contributions of ion and electron transfer for proton insertion in ϵ-MnO2. Chem Phys Chem 23:00364–00370

    Google Scholar 

  10. Keizer J (1987) Statistical thermodynamics of non-equilibrium processes. Springer NY, USA

    Book  Google Scholar 

  11. Onsager L (1931) Reciprocal relations in irreversible processes Phys. Rev 37:405–426

    CAS  Google Scholar 

  12. Katchalsky A, Curran PF (1965) Non-equilibrium thermodynamics in biophysics. Harvard University Press

    Book  Google Scholar 

  13. Sethi R, Sangaranarayanan MV (2008) Nonequilibrium thermodynamics formalism for Marcus theory of heterogeneous and self-exchange electron-transfer rate constants. J Phys Chem A 112:4308–4313

    Article  CAS  PubMed  Google Scholar 

  14. Murray RW (1984) In: Bard AJ (ed) Electroanalytical chemistry, vol 13. Marcel Dekker Inc., NY

    Google Scholar 

  15. Denny RA, Sangaranarayanan MV (1998) Flux−force formalism for charge transport dynamics in supramolecular structures. 1. Activity coefficient and interaction energy considerations. J Phys Chem B 102:2131–2137

    Article  CAS  Google Scholar 

  16. Denny RA, Sangaranarayanan MV (1998) Dynamics of competing diffusion processes in a bias electric field: kinetic Ising model approach and phenomenological descriptions. J Phys A Math General 31:7671–7683

    Article  ADS  CAS  Google Scholar 

  17. Denny RA, Sangaranarayanan MV (1998) Dynamics of electron hopping in redox polymer electrodes using kinetic Ising model. J Solid State Electrochem 2:67–72

    Article  CAS  Google Scholar 

  18. Saveant JM (1986) Electron hopping between fixed sites: equivalent diffusion and migration laws. J Electroanal Chem 201:211–213

    Article  CAS  Google Scholar 

  19. Srinivasamohan ML, Sangaranarayanan MV (1992) A generalized diffusion-migration equation for long distance electron hopping between redox centres. J Electroanal Chem 323:375–379

    Article  Google Scholar 

  20. Dahms H (1968) Electronic conduction in aqueous solution. J Phys Chem 72:362–364

    Article  CAS  Google Scholar 

  21. Ruff I, Friedrich VJ (1971) Transfer diffusion. I Theoretical J Phys Chem 75:3297–3302

    Article  CAS  Google Scholar 

  22. Ghez R (1988) A primer of diffusion problems. Wiley-VCH

    Book  Google Scholar 

  23. Chandrasekhar S (1963) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89

    Article  ADS  MathSciNet  Google Scholar 

  24. Fritsch-Faules I, Faulkner LR (1989) A microscopic model for diffusion of electrons by successive hopping among redox centers in networks. J Electroanal Chem 263:237–255

    Article  CAS  Google Scholar 

  25. Mohan LS, Sangaranarayanan MV, Rangarajan SK (1991) A model for generalized diffusion coefficient for electron hopping in redox polymer electrodes. Extended Abstracts of 180th ECS meeting in Phoenix, Arizona

  26. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions with formulas, graphs and mathematical tables. Dover Publishers Inc

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sangaranarayanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangaranarayanan, M.V. Paradigm shift in electrochemistry education and research: new opportunities from a theoretical perspective. J Solid State Electrochem 28, 1313–1317 (2024). https://doi.org/10.1007/s10008-023-05534-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05534-6

Keywords

Navigation